Network Theory Puzzles on “Relation between Transmission Parameters with Short Circuit Admittance and Open Circuit Impedance Parameters”.
1. For a T shaped network, if the Short-circuit admittance parameters are y11, y12, y21, y22, then y11 in terms of Transmission parameters can be expressed as ________
A. y11 = (frac{D}{B})
B. y11 = (frac{C-A}{B})
C. y11 = – (frac{1}{B})
D. y11 = (frac{A}{B})
Answer: A
Clarification: We know that, V1 = AV2 – BI2 ……… (1)
I1 = CV2 – DI2 …………… (2)
And, I1 = y11 V1 + y12 V2 ……… (3)
I2 = y21 V1 + y22 V2 ………. (4)
Now, (1) and (2) can be rewritten as, I2 = (frac{A}{B}V_2 – frac{1}{B}V_1) …………. (5)
And I1 = CV2 – D (left(frac{A}{B}V_2 – frac{1}{B}V_1right) = frac{D}{B}V_1 + left(C-frac{A}{B}right) V_2) …………… (6)
Comparing equations (3), (4) and (5), (6), we get,
y11 = (frac{D}{B})
y12 = (frac{C-A}{B})
y21 = – (frac{1}{B})
y22 = (frac{A}{B}).
2. For a T shaped network, if the Short-circuit admittance parameters are y11, y12, y21, y22, then y12 in terms of Transmission parameters can be expressed as ________
A. y12 = (frac{D}{B})
B. y12 = (frac{C-A}{B})
C. y12 = – (frac{1}{B})
D. y12 = (frac{A}{B})
Answer: B
Clarification: We know that, V1 = AV2 – BI2 ……… (1)
I1 = CV2 – DI2 …………… (2)
And, I1 = y11 V1 + y12 V2 ……… (3)
I2 = y21 V1 + y22 V2 ………. (4)
Now, (1) and (2) can be rewritten as, I2 = (frac{A}{B}V_2 – frac{1}{B}V_1) …………. (5)
And I1 = CV2 – D (left(frac{A}{B}V_2 – frac{1}{B}V_1right) = frac{D}{B}V_1 + left(C-frac{A}{B}right) V_2) …………… (6)
Comparing equations (3), (4) and (5), (6), we get,
y11 = (frac{D}{B})
y12 = (frac{C-A}{B})
y21 = – (frac{1}{B})
y22 = (frac{A}{B}).
3. For a T shaped network, if the Short-circuit admittance parameters are y11, y12, y21, y22, then y21 in terms of Transmission parameters can be expressed as ________
A. Y21 = (frac{D}{B})
B. Y21 = (frac{C-A}{B})
C. Y21 = – (frac{1}{B})
D. Y21 = (frac{A}{B})
Answer: C
Clarification: We know that, V1 = AV2 – BI2 ……… (1)
I1 = CV2 – DI2 …………… (2)
And, I1 = y11 V1 + y12 V2 ……… (3)
I2 = y21 V1 + y22 V2 ………. (4)
Now, (1) and (2) can be rewritten as, I2 = (frac{A}{B}V_2 – frac{1}{B}V_1) …………. (5)
And I1 = CV2 – D (left(frac{A}{B}V_2 – frac{1}{B}V_1right) = frac{D}{B}V_1 + left(C-frac{A}{B}right) V_2) …………… (6)
Comparing equations (3), (4) and (5), (6), we get,
y11 = (frac{D}{B})
y12 = (frac{C-A}{B})
y21 = – (frac{1}{B})
y22 = (frac{A}{B}).
4. For a T shaped network, if the Short-circuit admittance parameters are y11, y12, y21, y22, then y22 in terms of Transmission parameters can be expressed as ________
A. y22 = (frac{D}{B})
B. y22 = (frac{C-A}{B})
C. y22 = – (frac{1}{B})
D. y22 = (frac{A}{B})
Answer: D
Clarification: We know that, V1 = AV2 – BI2 ……… (1)
I1 = CV2 – DI2 …………… (2)
And, I1 = y11 V1 + y12 V2 ……… (3)
I2 = y21 V1 + y22 V2 ………. (4)
Now, (1) and (2) can be rewritten as, I2 = (frac{A}{B}V_2 – frac{1}{B}V_1) …………. (5)
And I1 = CV2 – D (left(frac{A}{B}V_2 – frac{1}{B}V_1right) = frac{D}{B}V_1 + left(C-frac{A}{B}right) V_2) …………… (6)
Comparing equations (3), (4) and (5), (6), we get,
y11 = (frac{D}{B})
y12 = (frac{C-A}{B})
y21 = – (frac{1}{B})
y22 = (frac{A}{B}).
5. For a T-network if the Open circuit Impedance parameters are z11, z12, z21, z22, then z11 in terms of Transmission parameters can be expressed as ____________
A. z11 = (frac{A}{C})
B. z11 = (frac{AD}{C – B})
C. z11 = (frac{1}{C})
D. z11 = (frac{D}{C})
Answer: A
Clarification: We know that, V1 = z11 I1 + z12 I2 …………. (1)
V2 = z21 I1 + z22 I2 ……………. (2)
And V1 = AV2 – BI2 ……… (3)
I1 = CV2 – DI2 …………… (4)
Rewriting (3) and (4), we get,
V2 = (frac{1}{C}I_1 + frac{D}{C}I_2) …………… (5)
And V1 = (A left(frac{1}{C}I_1 + frac{D}{C}I_2right) – BI_2 = frac{A}{C}I_1 + left(frac{AD}{C} – Bright) I_2) ………….. (6)
Comparing (1), (2) and (5), (6), we get,
z11 = (frac{A}{C})
z12 = (frac{AD}{C – B})
z21 = (frac{1}{C})
z22 = (frac{D}{C}).
6. For a T-network if the Open circuit Impedance parameters are z11, z12, z21, z22, then z12 in terms of Transmission parameters can be expressed as ____________
A. z12 = (frac{A}{C})
B. z12 = (frac{AD}{C – B})
C. z12 = (frac{1}{C})
D. z12 = (frac{D}{C})
Answer: B
Clarification: We know that, V1 = z11 I1 + z12 I2 …………. (1)
V2 = z21 I1 + z22 I2 ……………. (2)
And V1 = AV2 – BI2 ……… (3)
I1 = CV2 – DI2 …………… (4)
Rewriting (3) and (4), we get,
V2 = (frac{1}{C}I_1 + frac{D}{C}I_2) …………… (5)
And V1 = (A left(frac{1}{C}I_1 + frac{D}{C}I_2right) – BI_2 = frac{A}{C}I_1 + left(frac{AD}{C} – Bright) I_2) ………….. (6)
Comparing (1), (2) and (5), (6), we get,
z11 = (frac{A}{C})
z12 = (frac{AD}{C – B})
z21 = (frac{1}{C})
z22 = (frac{D}{C}).
7. For a T-network if the Open circuit Impedance parameters are z11, z12, z21, z22, then z21 in terms of Transmission parameters can be expressed as ____________
A. z21 = (frac{A}{C})
B. z21 = (frac{AD}{C – B})
C. z21 = (frac{1}{C})
D. z21 = (frac{D}{C})
Answer: C
Clarification: We know that, V1 = z11 I1 + z12 I2 …………. (1)
V2 = z21 I1 + z22 I2 ……………. (2)
And V1 = AV2 – BI2 ……… (3)
I1 = CV2 – DI2 …………… (4)
Rewriting (3) and (4), we get,
V2 = (frac{1}{C}I_1 + frac{D}{C}I_2) …………… (5)
And V1 = (A left(frac{1}{C}I_1 + frac{D}{C}I_2right) – BI_2 = frac{A}{C}I_1 + left(frac{AD}{C} – Bright) I_2) ………….. (6)
Comparing (1), (2) and (5), (6), we get,
z11 = (frac{A}{C})
z12 = (frac{AD}{C – B})
z21 = (frac{1}{C})
z22 = (frac{D}{C}).
8. For a T-network if the Open circuit Impedance parameters are z11, z12, z21, z22, then z22 in terms of Transmission parameters can be expressed as ____________
A. z22 = (frac{A}{C})
B. z22 = (frac{AD}{C – B})
C. z22 = (frac{1}{C})
D. z22 = (frac{D}{C})
Answer: D
Clarification: We know that, V1 = z11 I1 + z12 I2 …………. (1)
V2 = z21 I1 + z22 I2 ……………. (2)
And V1 = AV2 – BI2 ……… (3)
I1 = CV2 – DI2 …………… (4)
Rewriting (3) and (4), we get,
V2 = (frac{1}{C}I_1 + frac{D}{C}I_2) …………… (5)
And V1 = (A left(frac{1}{C}I_1 + frac{D}{C}I_2right) – BI_2 = frac{A}{C}I_1 + left(frac{AD}{C} – Bright) I_2) ………….. (6)
Comparing (1), (2) and (5), (6), we get,
z11 = (frac{A}{C})
z12 = (frac{AD}{C – B})
z21 = (frac{1}{C})
z22 = (frac{D}{C}).
9. For a T shaped network, if the Short-circuit admittance parameters are y11, y12, y21, y22, then y11 in terms of Inverse Transmission parameters can be expressed as ________
A. y11 = (frac{A’}{B’})
B. y11 = – (frac{1}{B’})
C. y11 = (left(C’ – frac{D’ A’}{B’}right))
D. y11 = (frac{D’}{B’})
Answer: A
Clarification: We know that, V2 = A’V1 – B’I1 ……… (1)
I2 = C’V1 – D’I1 …………… (2)
And, I1 = y11 V1 + y12 V2 ……… (3)
I2 = y21 V1 + y22 V2 ………. (4)
Now, (1) and (2) can be rewritten as, I1 = – (frac{1}{B’} V_2 + frac{A’}{B’} V_1) …………. (5)
And I2 = C’V1 – D’ (left(- frac{1}{B’} V_2 + frac{A’}{B’} V_1right) = left(C’ – frac{D’ A’}{B’}right) V_1 + frac{D’}{B’} V_2) ………… (6)
Comparing equations (3), (4) and (5), (6), we get,
y11 = (frac{A’}{B’})
y12 = – (frac{1}{B’})
y21 = (left(C’ – frac{D’ A’}{B’}right))
y22 = (frac{D’}{B’}).
10. For a T shaped network, if the Short-circuit admittance parameters are y11, y12, y21, y22, then y12 in terms of Inverse Transmission parameters can be expressed as ________
A. y12 = (frac{A’}{B’})
B. y12 = – (frac{1}{B’})
C. y12 = (left(C’ – frac{D’ A’}{B’}right))
D. y12 = (frac{D’}{B’})
Answer: B
Clarification: We know that, V2 = A’V1 – B’I1 ……… (1)
I2 = C’V1 – D’I1 …………… (2)
And, I1 = y11 V1 + y12 V2 ……… (3)
I2 = y21 V1 + y22 V2 ………. (4)
Now, (1) and (2) can be rewritten as, I1 = – (frac{1}{B’} V_2 + frac{A’}{B’} V_1) …………. (5)
And I2 = C’V1 – D’ (left(- frac{1}{B’} V_2 + frac{A’}{B’} V_1right) = left(C’ – frac{D’ A’}{B’}right) V_1 + frac{D’}{B’} V_2) ………… (6)
Comparing equations (3), (4) and (5), (6), we get,
y11 = (frac{A’}{B’})
y12 = – (frac{1}{B’})
y21 = (left(C’ – frac{D’ A’}{B’}right))
y22 = (frac{D’}{B’}).
11. For a T shaped network, if the Short-circuit admittance parameters are y11, y12, y21, y22, then y21 in terms of Inverse Transmission parameters can be expressed as ________
A. y21 = (frac{A’}{B’})
B. y21 = – (frac{1}{B’})
C. y21 = (left(C’ – frac{D’ A’}{B’}right))
D. y21 = (frac{D’}{B’})
Answer: C
Clarification: We know that, V2 = A’V1 – B’I1 ……… (1)
I2 = C’V1 – D’I1 …………… (2)
And, I1 = y11 V1 + y12 V2 ……… (3)
I2 = y21 V1 + y22 V2 ………. (4)
Now, (1) and (2) can be rewritten as, I1 = – (frac{1}{B’} V_2 + frac{A’}{B’} V_1) …………. (5)
And I2 = C’V1 – D’ (left(- frac{1}{B’} V_2 + frac{A’}{B’} V_1right) = left(C’ – frac{D’ A’}{B’}right) V_1 + frac{D’}{B’} V_2) ………… (6)
Comparing equations (3), (4) and (5), (6), we get,
y11 = (frac{A’}{B’})
y12 = – (frac{1}{B’})
y21 = (left(C’ – frac{D’ A’}{B’}right))
y22 = (frac{D’}{B’}).
12. For a T shaped network, if the Short-circuit admittance parameters are y11, y12, y21, y22, then y22 in terms of Inverse Transmission parameters can be expressed as ________
A. y22 = (frac{A’}{B’})
B. y22 = – (frac{1}{B’})
C. y22 = (left(C’ – frac{D’ A’}{B’}right))
D. y22 = (frac{D’}{B’})
Answer: D
Clarification: We know that, V2 = A’V1 – B’I1 ……… (1)
I2 = C’V1 – D’I1 …………… (2)
And, I1 = y11 V1 + y12 V2 ……… (3)
I2 = y21 V1 + y22 V2 ………. (4)
Now, (1) and (2) can be rewritten as, I1 = – (frac{1}{B’} V_2 + frac{A’}{B’} V_1) …………. (5)
And I2 = C’V1 – D’ (left(- frac{1}{B’} V_2 + frac{A’}{B’} V_1right) = left(C’ – frac{D’ A’}{B’}right) V_1 + frac{D’}{B’} V_2) ………… (6)
Comparing equations (3), (4) and (5), (6), we get,
y11 = (frac{A’}{B’})
y12 = – (frac{1}{B’})
y21 = (left(C’ – frac{D’ A’}{B’}right))
y22 = (frac{D’}{B’}).
13. For a T-network if the Open circuit Impedance parameters are z11, z12, z21, z22, then z11 in terms of Transmission parameters can be expressed as ____________
A. z11 = (frac{D’}{C’})
B. z11 = (frac{1}{C’})
C. z11 = (left(frac{A’ D’}{C’} – B’right))
D. z11 = (frac{A’}{C’})
Answer: A
Clarification: We know that, V1 = z11 I1 + z12 I2 …………. (1)
V2 = z21 I1 + z22 I2 ……………. (2)
And V2 = A’V1 – B’I1 ……… (3)
I2 = C’V1 – D’I1 …………… (4)
Rewriting (3) and (4), we get,
V2 = A’ (left(frac{D’}{C’} I_1 + frac{1}{C’} I_2right) – B’I_1 = left(frac{A’ D’}{C’} – B’right) I_1 + frac{A’}{C’} I_2) ………… (5)
And V1 = (frac{D’}{C’} I_1 + frac{1}{C’} I_2) ………….. (6)
Comparing (1), (2) and (5), (6), we get,
z11 = (frac{D’}{C’})
z12 = (frac{1}{C’})
z21 = (left(frac{A’ D’}{C’} – B’right))
z22 = (frac{A’}{C’}).
14. For a T-network if the Open circuit Impedance parameters are z11, z12, z21, z22, then z12 in terms of Transmission parameters can be expressed as ____________
A. z12 = (frac{D’}{C’})
B. z12 = (frac{1}{C’})
C. z12 = (left(frac{A’ D’}{C’} – B’right))
D. z12 = (frac{A’}{C’})
Answer: B
Clarification: We know that, V1 = z11 I1 + z12 I2 …………. (1)
V2 = z21 I1 + z22 I2 ……………. (2)
And V2 = A’V1 – B’I1 ……… (3)
I2 = C’V1 – D’I1 …………… (4)
Rewriting (3) and (4), we get,
V2 = A’ (left(frac{D’}{C’} I_1 + frac{1}{C’} I_2right) – B’I_1 = left(frac{A’ D’}{C’} – B’right) I_1 + frac{A’}{C’} I_2) ………… (5)
And V1 = (frac{D’}{C’} I_1 + frac{1}{C’} I_2) ………….. (6)
Comparing (1), (2) and (5), (6), we get,
z11 = (frac{D’}{C’})
z12 = (frac{1}{C’})
z21 = (left(frac{A’ D’}{C’} – B’right))
z22 = (frac{A’}{C’}).
15. For a T-network if the Open circuit Impedance parameters are z11, z12, z21, z22, then z22 in terms of Transmission parameters can be expressed as ____________
A. z22 = (frac{D’}{C’})
B. z22 = (frac{1}{C’})
C. z22 = (left(frac{A’ D’}{C’} – B’right))
D. z22 = (frac{A’}{C’})
Answer: D
Clarification: We know that, V1 = z11 I1 + z12 I2 …………. (1)
V2 = z21 I1 + z22 I2 ……………. (2)
And V2 = A’V1 – B’I1 ……… (3)
I2 = C’V1 – D’I1 …………… (4)
Rewriting (3) and (4), we get,
V2 = A’ (left(frac{D’}{C’} I_1 + frac{1}{C’} I_2right) – B’I_1 = left(frac{A’ D’}{C’} – B’right) I_1 + frac{A’}{C’} I_2) ………… (5)
And V1 = (frac{D’}{C’} I_1 + frac{1}{C’} I_2) ………….. (6)
Comparing (1), (2) and (5), (6), we get,
z11 = (frac{D’}{C’})
z12 = (frac{1}{C’})
z21 = (left(frac{A’ D’}{C’} – B’right))
z22 = (frac{A’}{C’}).