250+ TOP MCQs on Properties of Inverse Trigonometric Functions | Class 12 Maths

Mathematics Multiple Choice Questions on “Properties of Inverse Trigonometric Functions”.

1. sin-1⁡x in terms of cos-1⁡is ____________
a) cos-1⁡(sqrt{1+x^2})
b) cos-1⁡(sqrt{1-x^2})
c) cos-1⁡x
d) cos-1(frac{⁡1}{x})
Answer: b
Clarification: Let sin-1⁡x=y
⇒x=sin⁡y
⇒(x=sqrt{1-cos^2⁡y})
⇒(x^2=1-cos^2⁡y)
⇒(cos^2⁡y=1-x^2)
∴y=cos-1⁡(sqrt{1-x^2})=sin-1⁡x.

2. What is sec-1⁡x in terms of tan-1⁡?
a) tan-1⁡(sqrt{1+x^2})
b) tan-1⁡1+x2
c) tan-1⁡x
d) tan-1⁡(sqrt{x^2-1})
Answer: d
Clarification: Let sec-1⁡x=y
⇒x=sec⁡y
⇒x=(sqrt{1+tan^2⁡y})
⇒x2-1=tan2⁡y
∴y=tan-1⁡(sqrt{x^2-1})=sec-1⁡x.

3. What is the value of cos⁡(tan-1⁡((frac{4}{5})))?
a) (frac{5}{4})
b) (frac{5}{sqrt{41}})
c) (frac{sqrt{41}}{5})
d) (frac{4}{5})
Answer: b
Clarification: From ∆ABC, we get
mathematics-questions-answers-properties-inverse-trigonometric-functions-q3
tan-1⁡((frac{4}{5}))=cos-1⁡((frac{5}{sqrt{41}}))
cos⁡(tan-1⁡((frac{4}{5}))=cos⁡(cos-1⁡((frac{5}{sqrt{41}})))
=(frac{5}{sqrt{41}})

4. What is the solution of cot⁡(sin-1⁡x)?
a) (frac{sqrt{1-x^2}}{x})
b) x
c) (sqrt{1-x^2})
d) (sqrt{1+x^2})
Answer: a
Clarification: Let sin-1⁡x=y. From ∆ABC, we get
mathematics-questions-answers-properties-inverse-trigonometric-functions-q4
y=sin-1⁡x=cot-1⁡((frac{sqrt{1-x^2}}{x}))
∴cot⁡(sin-1⁡x)=(cot⁡(cot^{-1}(frac{sqrt{1-x^2}}{x}))=frac{sqrt{1-x^2}}{x}).

5. Which of the following formula is incorrect?
a) sin-1⁡x+sin-1⁡y=sin-1⁡{(xsqrt{1-y^2}+ysqrt{1-x^2})}
b) sin-1⁡x-sin-1⁡y=sin-1⁡{(xsqrt{1+y^2}+ysqrt{1+x^2})}
c) 2 tan-1⁡x=tan-1⁡((frac{2x}{1-x^2}))
d) 2 cos-1⁡x=cos-1⁡(3x-4x3)
Answer: b
Clarification: The formula sin-1⁡x-sin-1⁡y=sin-1⁡{(xsqrt{1+y^2}+ysqrt{1+x^2})} is incorrect. The correct formula is sin-1⁡x-sin-1⁡y=sin-1⁡{(xsqrt{1+y^2}-y sqrt{1-x^2})}.

6. Find the value of sin-1⁡((frac{5}{13}))+cos-1⁡((frac{3}{5})).
a) sin-1⁡((frac{63}{65}))
b) sin-1⁡1
c) 0
d) sin-1⁡((frac{64}{65}))
Answer: a
Clarification: From ∆ABC, we get
mathematics-questions-answers-properties-inverse-trigonometric-functions-q6
cos-1⁡((frac{3}{5}))=sin-1⁡((frac{4}{5}))
∴sin-1⁡((frac{5}{13}))+cos-1⁡((frac{3}{5}))=sin-1⁡((frac{5}{13}))+sin-1⁡((frac{4}{5}))
=sin-1⁡((frac{5}{13}sqrt{1-(frac{4}{5})^2}+frac{4}{5}sqrt{1-(frac{5}{13})^2}))
=(sin^{-1}(frac{5}{13}×frac{3}{5}+frac{4}{5}×frac{12}{13})=sin^{-1}(frac{15+48}{65})=sin^{-1}(frac{63}{65})).

7. Find the value of tan-1⁡((frac{1}{3}))+tan-1⁡((frac{1}{5}))+tan-1⁡(frac{1}{7})[/latex]
a) tan-1⁡((frac{4}{7}))
b) tan-1⁡((frac{9}{7}))
c) tan-1⁡((frac{7}{9}))
d) tan-1⁡1
Answer: c
Clarification: Using the formula tan-1⁡x+tan-1⁡y=tan-1⁡(frac{x+y}{1-xy}), we get
tan-1⁡((frac{1}{3}))+tan-1⁡((frac{1}{5}))=tan-1⁡(bigg(frac{frac{1}{3}+frac{1}{5}}{1-frac{1}{3}×frac{1}{5}}bigg))
= (tan^{-1}bigg(frac{frac{8}{15}}{frac{14}{15}}bigg)=tan^{-1}⁡(frac{8}{15}×frac{15}{14})=tan^{-1}⁡(frac{4}{7}))
=(tan^{-1}(frac{1}{3})+tan^{-1}(frac{1}{5})+tan^{-1}⁡(frac{1}{7})=tan^{-1}(frac{4}{7})+tan^{-1}⁡(frac{1}{7}))
=(tan^{-1}⁡bigg(frac{frac{4}{7} + frac{1}{7}}{1-frac{4}{7}×frac{1}{7}}bigg) = tan^{-1}⁡bigg(frac{frac{5}{7}}{frac{45}{49}}bigg)=tan^{-1}⁡(frac{5}{7}×frac{49}{45}))
=tan-1⁡((frac{7}{9})).

8. Find the value of sin-1⁡((frac{3}{5}))+sin-1⁡((frac{4}{5}))+cos-1⁡((frac{sqrt{3}}{2})).
a) (frac{π}{3})
b) (frac{2π}{3})
c) (frac{4π}{3})
d) (frac{π}{4})
Answer: b
Clarification: Using the formula sin-1⁡x+sin-1⁡y=sin-1⁡({x sqrt{1-y^2}+y sqrt{1-x^2}}), we get
sin-1⁡((frac{3}{5}))+sin-1⁡((frac{4}{5}))=sin-1(Big{ frac{3}{5} sqrt{1-(frac{4}{5})^2}+frac{4}{5} sqrt{1-(frac{3}{5})^2} Big})
=sin-1⁡((frac{3}{5})×(frac{3}{5})+(frac{4}{5})×(frac{4}{5}))=sin-1⁡((frac{25}{25})=frac{π}{2})
∴ sin-1⁡((frac{3}{5}))+sin-1⁡((frac{4}{5}))+cos-1⁡((frac{sqrt{3}}{2})=frac{π}{2}+frac{π}{6}=frac{3π+π}{6}=frac{2π}{3}).

9. What is the value of 2 tan-1⁡x in terms of sin-1⁡?
a) sec-1⁡x
b) 2 sec-1⁡x
c) 2 sec-1⁡((sqrt{1+x^2}))
d) sec-1⁡((sqrt{1+x^2}))
Answer: c
Clarification: Let 2 tan-1⁡x=y
⇒tan-1⁡x=(frac{y}{2})
From ∆ABC, we get
mathematics-questions-answers-properties-inverse-trigonometric-functions-q9
⇒tan-1⁡x=sec-1⁡(sqrt{1+x^2}=frac{y}{2})
⇒y=2 sec-1⁡((sqrt{1+x^2}))

10. sin-1⁡x+cos1⁡x= ___
a) (frac{π}{2})
b) π
c) (frac{π}{3})
d) 2π
Answer: a
Clarification: sin-1⁡x+cos-1⁡x=(frac{π}{2}); x∈[-1,1]

Leave a Reply

Your email address will not be published. Required fields are marked *