Mathematics Quiz for Class 12 on “Determinant – 3”.
1. What will be the value of (begin{vmatrix}0 & p-q & a – b\q – p & 0 & x – y\b – a & y – x & 0 end {vmatrix})?
a) 0
b) a + b
c) x + y
d) p + q
Answer: a
Clarification: The above matrix is a skew symmetric matrix and its order is odd
And we know that for any skew symmetric matrix with odd order has determinant = 0
Therefore, the value of the given determinant = 0.
2. What will be the value of f(x) if (begin{vmatrix}x & b & c\a & y & c\a & b & z end {vmatrix})?
a) (x – a)(y – b)(z – c)((frac{x}{x-a} + frac{b}{y – b} – frac{c}{z-c}) – 2)
b) (x – a)(y – b)(z – c)((frac{x}{x-a} – frac{b}{y – b} – frac{c}{z-c}) – 2)
c) (x – a)(y – b)(z – c)((frac{x}{x-a} + frac{b}{y – b} + frac{c}{z-c}) – 2)
d) (x – a)(y – b)(z – c)((frac{x}{x-a} + frac{b}{y – b} + frac{c}{z-c}) + 2)
Answer: c
Clarification: Given, (begin{vmatrix}x & b & c\a & y & c\a & b & z end {vmatrix}) = (begin{vmatrix}x & b & c\a – x & y – b & 0\0 & b – y & z – c end {vmatrix})
Applying the operation R2 = R2 – R1 and R3 = R3 – R2
= (x – a)(y – b)(z – c)(begin{vmatrix}x/(x – a) & b/(y – b) & c/(z – c)\-1 & y 1 & 0\0 & -1 & 1 end {vmatrix})
Now, expanding the determinant we get,
= (x – a)(y – b)(z – c)((frac{x}{x-a} + frac{b}{y – b} + frac{c}{z-c}))
= (x – a)(y – b)(z – c)((frac{x}{x-a} + frac{b}{y – b} + frac{c}{z-c}) – 2)
This is because,
(frac{b}{y – b} + frac{c}{z-c} = frac{y-(y-b)}{y-b} + frac{z-(z-c)}{z-c} = frac{y}{y-b}) – 1 + (frac{z}{z-c}) – 1 = (frac{y}{y-b} + frac{z}{z-c}) – 2
3. What will be the value of (begin{vmatrix}cos^2 θ & cosθ , sinθ & -sinθ \cosθ, sinθ & sin^2θ & cosθ \sinθ & -cosθ & 0 end {vmatrix})?
a) -1
b) 0
c) 1
d) 2
Answer: c
Clarification: The given matrix is, (begin{vmatrix}cos^2 θ & cosθ, sinθ & -sinθ \cosθ, sinθ & sin^2 θ & cosθ \sinθ & -cosθ & 0 end {vmatrix})
Now, performing the row operations R1 = R1 + sinθR3 and R2 = R2 – cosθR3
=(begin{vmatrix}cos^2 θ + sin^2 θ & cosθ, sinθ – cosθ sinθ & -sinθ \cosθ, sinθ – cosθ sinθ & cos^2 θ + sin^2 θ & cosθ \sinθ & -cosθ & 0 end {vmatrix})
Solving further,
= (begin{vmatrix}1 & 0 & -sinθ \0 & 1 & cosθ \sinθ & -cosθ & 0 end {vmatrix})
Breaking the determinant, we get,
= 1(0 + cos2θ) – sinθ(0 – sinθ)
= 1
4. What is the value of (begin{vmatrix}sin^2 a & sina, cosa & cos^2 a \sin^2 b & sinb, cosb & cos^2 b \sin^2 c & sinc, cosc & cos^2 c end {vmatrix})?
a) -sin(a – b) sin(b – c) sin(c – a)
b) sin(a – b) sin(b – c) sin(c – a)
c) -sin(a + b) sin(b + c) sin(c + a)
d) sin(a + b) sin(b + c) sin(c + a)
Answer: a
Clarification: We have, (begin{vmatrix}sin^2 a & sina ,cosa & cos^2 a\sin^2 b & sinb, cosb & cos^2 b\sin^2 c & sinc, cosc & cos^2 c end {vmatrix})
Now, multiplying by 2 in both numerator and denominator of column 2 and C1 = C1 + C3 we get,
1/2 (begin{vmatrix}sin^2 a + cos^2 a & 2sina, cosa & cos^2 a\sin^2 b + cos^2 b & 2sinb, cosb & cos^2 b\sin^2 c + cos^2 c & 2sinc, cosc & cos^2 c end {vmatrix})
= 1/2 (begin{vmatrix}sin^2 a + cos^2 a & sin2a & cos^2 a\sin^2 b + cos^2 b & sin2b & cos^2 b\sin^2 c + cos^2 c & sin2c & cos^2 c end {vmatrix})
= 1/2 (begin{vmatrix}1 & sin2a & cos^2 a\1 & sin2b & cos^2 b\1 & sin2c & cos^2 c end {vmatrix})
Solving further,
= 1/2 (begin{vmatrix}1 & sin2a & cos^2a \0 & sin2b-sin2a & cos^2 b-cos^2 a \0 & sin2c-sin2a & cos^2 c-cos^2 a end {vmatrix})
= 1/2 [(sin2b – sin2a)(cos2c – cos2a) – (cos2 b – cos2a)(sin2c – sin2a)]
Now, since, [cos2 A + cos2 B = sin(A + B) * sin(B – A)]
So, 1/2 [2 cos(a + b) sin(b – a) * sin(c + a)sin(a – c) – sin(a + b)sin(a – b) * 2 cos(a + c)sin(c – a)]
= sin(a – b)sin(c – a)[sin(c + a)cos(a + b) – cos(c + a) sin(a + b)]
= sin(a – b) sin(c – a) sin(c + a – a – b)
= -sin(a – b) sin(b – c) sin(c – a)
5. What will be the value of f(x) if (begin{vmatrix}2ab & a^2 & b^2 \a^2 & b^2 & 2ab \b^2 & 2ab & a^2 end {vmatrix})?
a) a2 + b2
b) -(a2 + b2)
c) -(a2 + b2)3
d) -(a3 + b3)2
Answer: d
Clarification: Given,(begin{vmatrix}2ab & a^2 & b^2 \a^2 & b^2 & 2ab \b^2 & 2ab & a^2 end {vmatrix})
Using C1 = C1 + C2 + C3
= (begin{vmatrix}a^2 + b^2 + 2ab & a^2 & b^2 \a^2 + b^2 + 2ab & b^2 & 2ab \a^2 + b^2 + 2ab & 2ab & a^2 end {vmatrix})
= (a + b)2(begin{vmatrix}1 & a^2 & b^2 \1 & b^2 & 2ab \1 & 2ab & a^2 end {vmatrix})
= (a + b)2(begin{vmatrix}1 & a^2 & b^2 \1 & b^2 – a^2 & 2ab – b^2 \0 & 2ab – a^2 & a^2 – b^2 end {vmatrix})
= (a + b)2[(b2 – a2)(a2 – b2) – (2ab – b2)( 2ab – a2)]
= -(a + b)2[(a2 – b2)2 + 4a2b2 – 2ab(a2 + b2) + a2 b2)]
= –(a + b)2[(a2+b2)2 – 2(a2+b2) (ab)+(ab)2]
= –(a + b)2(a2 + b2 – ab)2
= –[(a + b)2(a2 + b2 – ab)2]2
= –(a3 + b3)2
6. What will be the value of f(x) if (begin{vmatrix}1 & ab & (frac{1}{a} + frac{1}{b}) \1 & bc & (frac{1}{b} + frac{1}{c}) \1 & ca & (frac{1}{c} + frac{1}{a})end {vmatrix})?
a) -1
b) 0
c) 1
d) Can’t be predicted
Answer: c
Clarification: We have,(begin{vmatrix}1 & ab & (frac{1}{a} + frac{1}{b}) \1 & bc & (frac{1}{b} + frac{1}{c}) \1 & ca & (frac{1}{c} + frac{1}{a})end {vmatrix})
= (1/abc)(begin{vmatrix}1 & ab & frac{b + a}{ab} * abc \1 & bc & frac{b + c}{bc} * abc \1 & ca & frac{c + a}{ac} * abc end {vmatrix})
= (1/abc)(begin{vmatrix}1 & ab & bc + ac \1 & bc & ac + ab \1 & ca & ab + bc end {vmatrix})
Operating, C3 = C3 + C2
= (1/abc)(begin{vmatrix}1 & ab & ab + bc + ac \1 & bc & ab + bc + ac \1 & ca & ab + bc + ac end {vmatrix})
= ((ab + bc + ac)/abc)(begin{vmatrix}1 & ab & 1 \1 & bc & 1 \1 & ca & 1 end {vmatrix})
= 0
7. What is the value of (begin{vmatrix}1 & cosx-sinx & cosx + sinx \1 & cosy-siny & cosy + siny \1 & cosz-sinz & cosz + sinz end {vmatrix})?
a) 3(begin{vmatrix}1 & cosx & sinx \1 & cosy & siny \1 & cosz & sinz end {vmatrix})
b) (begin{vmatrix}1 & cosx & sinx \1 & cosy & siny \1 & cosz & sinz end {vmatrix})
c) 2(begin{vmatrix}1 & cosx & sinx \1 & cosy & siny \1 & cosz & sinz end {vmatrix})
d) 4(begin{vmatrix}1 & cosx & sinx \1 & cosy & siny \1 & cosz & sinz end {vmatrix})
Answer: c
Clarification: Let, a = cosx, b = cosy, c = cosz, p =sinx, q = siny and r = sinz
So, (begin{vmatrix}1 & a – p & a + p \1 & b – q & b + q \1 & c – r & c + r end {vmatrix})
Making C3 = C3 + C2
= (begin{vmatrix}1 & a – p & 2a \1 & b – q & 2b \1 & c – r & 2c end {vmatrix})
= 2(begin{vmatrix}1 & a – p & a \1 & b – q & b \1 & c – r & c end {vmatrix})
Making C2 = C2 – C3
= -2(begin{vmatrix}1 & p & a \1 & q & b \1 & r & c end {vmatrix})
Interchanging 2nd and 3rd column, we get,
2(begin{vmatrix}1 & a & p \1 & b & q \1 & c & r end {vmatrix})
= 2(begin{vmatrix}1 & cosx & sinx \1 & cosy & siny \1 & cosz & sinz end {vmatrix})