Mathematics MCQs for Engineering Entrance Exams on “Methods of Integration-2”.
1. Integrate 2 sin2x+cos2x.
a) (frac{3x}{2}+frac{sin2x}{4}+C)
b) (frac{3x}{2}-frac{sin2x}{4}+C)
c) (frac{x}{2}+frac{sin2x}{4}+C)
d) (frac{3x}{4}-frac{2sin2x}{2}+C)
Answer: b
Clarification: (int ,2 ,sin^2x +cos^2x=int sin^2x+sin^2x+cos^2x dx)
=(int sin^2x+1 dx)
=(int sin^2x dx+int 1 dx)
=(int frac{1-cos2x}{2} dx+int 1 dx)
=(frac{x}{2}-frac{sin2x}{4}+x)
=(frac{3x}{2}-frac{sin2x}{4}+C)
2. Integrate 8 tan3x sec2x.
a) 2 tan4x+C
b) 4 cot4x+C
c) 2 tan3x+C
d) tan4x+C
Answer: a
Clarification: To find: (int 8 ,tan^3x ,sec^2x ,dx)
Let tanx=t
sec2x dx=dt
∴(int 8 ,tan^3x ,sec^2x ,dx=int 8 ,t^3 ,dt=frac{8t^4}{4}=2t^4)
Replacing t with tanx, we get
(int 8 tan^3x sec^2x dx=2 tan^4x+C)
3. Find the integral of (frac{cos^2x-sin^2x}{7 cos^2x sin^2x}).
a) –(frac{1}{7}) (cotx-tanx)+C
b) –(frac{1}{7}) (cotx-2 tanx)+C
c) –(frac{1}{7}) (cotx+tanx)+C
d) –(frac{1}{7}) (2 cotx+3 tanx)+C
Answer: c
Clarification: To find: (int frac{cos^2x-sin^2x}{7 ,cos^2x ,sin^2x} dx)
(int frac{cos^2x-sin^2x}{7 ,cos^2x ,sin^2x} dx=frac{1}{7} int frac{1}{sin^2x}-frac{1}{cos^2x} dx)
=(frac{1}{7} int cosec^2 x-sec^2x dx)
=(frac{1}{7}) (-cotx-tanx)+C
=-(frac{1}{7}) (cotx+tanx)+C.
4. Find (int sin^2(8x+5) dx)
a) (frac{x}{4}+frac{sin(16x+10)}{32}+C)
b) (frac{x}{2}-frac{cos(16x+10)}{32}+C)
c) (frac{x}{2}-frac{sin(16x+10)}{32}+C)
d) (frac{x}{2}+frac{cos(16x+5)}{32}+C)
Answer: c
Clarification: (int sin^2(8x+5) dx=int frac{1-cos2(8x+5)}{2} dx=int frac{1}{2} dx-frac{1}{2} int cos(16x+10)dx)
=(frac{x}{2}-frac{1}{2} (frac{sin(16x+10)}{16})=frac{x}{2}-frac{sin(16x+10)}{32}+C)
5. Find (int frac{5 cos^2x}{1+sinx} dx).
a) -3(x+cosx)+C
b) 5(x+cosx)+C
c) 5(-x+sinx)+C
d) 5(x-cosx)+C
Answer: b
Clarification: (int frac{5 cos^2x}{1+sinx} dx=int frac{5(1-sin^2x)}{1+sinx}=5int frac{(1+sinx)(1-sinx)}{(1+sinx)} dx)
=5∫ (1-sinx)dx
=5(x-(-cosx))=5(x+cosx)+C
6. Find the integral of (frac{e^{-x} (1-x)}{sin^2(xe^{-x})}).
a) cotxe-x+C
b) -cotxe-x+C
c) -cotxex+C
d) -cos2xe-x+C
Answer: b
Clarification: (int frac{e^{-x} (1-x)}{sin^2(xe^{-x})} dx)
Let xe-x=t
Differentiating w.r.t x, we get
(-xe^{-x}+e^{-x} dx=dt)
e-x (1-x)dx=dt
(int frac{e^{-x} (1-x)}{sin^2(xe^{-x})} dx=int frac{dt}{sin^2t})
=(int cosec^2 ,t ,dt)
=-cott+C
Replacing t with xe-x, we get
(int frac{e^{-x} (1-x)}{sin^2(xe^{-x})} dx=-cotxe^{-x}+C).
7. Integrate (frac{2 cos2x}{(cosx-sinx)^2}).
a) -log(1+2sin2x)+C
b) (frac{1}{4}) log(1-sin2x)+C
c) –(frac{1}{4}) log(1+cos2x)+C
d) -log(1-sin2x)+C
Answer: d
Clarification: (int frac{2 cos2x}{(cosx-sinx)^2} dx=int frac{2 cos2x}{cos^2x+sin^2x-sin2x} ,dx ,(∵2 cosx sinx=sin2x))
=(int frac{2 cos2x}{1-sin2x} dx)
Let 1-sin2x=t
Differentiating w.r.t x, we get
-2 cos2x dx=dt
2 cos2x dx=-dt
(int frac{2 cos2x}{(cosx-sinx)^2} dx=-int frac{dt}{t})
=-logt
Replacing t with 1-sin2x, we get
∴(int frac{2 cos2x}{(cosx-sinx)^2}) dx=-log(1-sin2x)+C
8. Integrate sin3(x+2).
a) (frac{3}{4} ,(sin(x+2))+frac{1}{12} ,cos(3x+6)+C)
b) –(frac{3}{4} ,(cos(x+2))-frac{1}{5} ,cos(3x+6)+C)
c) –(frac{3}{4} ,(cos(x+2))+frac{1}{12} ,cos(3x+6)+C)
d) –(frac{3}{4} ,(cos(x+2))+frac{1}{12} ,sin(x+2)+C)
Answer: c
Clarification: To find: ∫ 3 sin3(x+2) dx
We know that, sin3x=3 sinx-4 sin3x
∴sin3x=(frac{3 sinx-sin3x}{4})
sin3(x+2)=(frac{(3 sin(x+2)-sin(3x+6))}{4})
(int sin^3(x+2) ,dx=frac{3}{4} int sin(x+2) ,dx-frac{1}{4} int ,sin(3x+6) ,dx)
=-(frac{3}{4} ,(cos(x+2))+frac{1}{12} ,cos(3x+6)+C)
9. Integrate 2x cos(x2+3).
a) sin(x2+3)+C
b) sin2(x2+3)+C
c) cot(x2+3)+C
d) -sin(x2+3)+C
Answer: a
Clarification: ∫ 2x cos(x2+3) dx
Let x2+3=t
Differentiating w.r.t x, we get
2x dx=dt
∫ 2x cos(x2+3) dx=∫ cost dt
=sint+C
Replacing w.r.t x, we get
∴∫ 2x cos(x2+3) dx=sin(x2+3)+C
10. Find ∫ 2 sin3x+1 dx
a) (frac{3}{2}-frac{cos3x}{6}+x+C)
b) –(frac{3}{2} cosx+frac{cos3x}{6}+x+C)
c) –(frac{3}{2} cosx-frac{cos3x}{6}-x+C)
d) –(frac{3}{2} cosx+frac{cos3x}{6}+C)
Answer: b
Clarification: We know that, sin3x=3 sinx-4 sin3x
∴sin3x=(frac{3 sinx-sin3x}{4})
(int 2 ,sin^3x+1 ,dx=int frac{(3 sinx-sin3x)}{2} dx+int dx)
=(frac{3}{2} int sinx dx-frac{1}{2} int sin3x dx+int dx)
=-(frac{3}{2} cosx+frac{cos3x}{6}+x+C)
Mathematics MCQs for Engineering Entrance Exams,