Mathematics Multiple Choice Questions on “Second Order Derivatives”.
1. Find the second order derivative of y=9 log t3.
a) (frac{27}{t^2})
b) –(frac{27}{t^2})
c) –(frac{1}{t^2})
d) –(frac{27}{2t^2})
Answer: b
Clarification: Given that, y=9 logt3
(frac{dy}{dx}=9.frac{1}{t^3}.3t^2=frac{27}{t})
(frac{d^2 y}{dx^2}=27(-frac{1}{t^2})=-frac{27}{t^2}).
2. Find (frac{d^2y}{dx^2}), if y=tan2x+3 tanx.
a) sec2x tanx (2 tanx+secx+3)
b) 2 sec2x tanx (2 tanx-secx+3)
c) 2 sec2x tanx (2 tanx+secx+3)
d) 2 sec2x tanx (2 tanx+secx-3)
Answer: c
Clarification: Given that, y=tan2x+3 tanx
(frac{dy}{dx})=2 tanx sec2x+3 sec2x=sec2x (2 tanx+3)
By using the u.v rule, we get
(frac{d^2 y}{dx^2}=frac{d}{dx}) (sec2x).(2 tanx+3)+(frac{d}{dx}) (2 tanx+3).sec2x
(frac{d^2 y}{dx^2})=2 sec2x tanx (2 tanx+3)+sec2x (2 secx tanx)
=2 sec2x tanx (2 tanx+secx+3).
3. If y=6x2+3, then (left (frac{dy}{dx}right )^2=frac{d^2 y}{dx^2}).
a) True
b) False
Answer: b
Clarification: The given statement is false. Given that, y=6x2+3
(frac{dy}{dx})=12x
⇒(left (frac{dy}{dx}right )^2=(12x)^2=144x^2)
(frac{d^2 y}{dx^2}=frac{d}{dx}) (12x)=12
∴(left (frac{dy}{dx}right )^2≠frac{d^2 y}{dx^2})
4. Find the second order derivative of y=2e2x-3 log(2x-3).
a) 8e2x+(frac{1}{(2x-3)^2})
b) 8e2x–(frac{12}{(2x-3)^2})
c) e2x+(frac{12}{(2x-3)^2})
d) 8e2x+(frac{12}{(2x-3)^2})
Answer: d
Clarification: Given that, y=2e2x-3 log(2x-3)
(frac{dy}{dx})=4e2x-3.(frac{1}{(2x-3)}).2=4e2x–(frac{6}{(2x-3)})
(frac{d^2 y}{dx^2}=frac{d}{dx} (frac{dy}{dx}))=8e2x+(frac{12}{(2x-3)^2})
5. Find (frac{d^2 y}{dx^2}), if y=2 sin-1(cosx).
a) 0
b) sin-1((frac{1}{cosx}))
c) 1
d) -1
Answer: a
Clarification: Given that, y=2 sin-1(cosx)
(frac{dy}{dx}=2.frac{1}{sqrt{1-cos^2x}}).-sinx=-2 (∵(sqrt{1-cos^2x})=sinx)
(frac{d^2 y}{dx^2})=(frac{d}{dx} (frac{dy}{dx})=frac{d}{dx}) (-2)=0
6. If y=log(2x3), find (frac{d^2 y}{dx^2}).
a) –(frac{2}{x^2})
b) (frac{3}{x^2})
c) (frac{2}{x^2})
d) –(frac{3}{x^2})
Answer: d
Clarification: Given that, y=log(2x3)
(frac{dy}{dx}=frac{1}{(2x^3)}.6x^2=frac{3}{x})
(frac{d^2 y}{dx^2}=-frac{3}{x^2})
7. Find (frac{d^2 y}{dx^2})-6 (frac{dy}{dx}) if y=4x4+2x.
a) ((4x^2+8x-1))
b) (12(4x^2+8x-1))
c) –(12(4x^2+8x-1))
d) (12(4x^2-8x-1))
Answer: d
Clarification: Given that, (y=4x^4+2x)
(frac{dy}{dx})=16x3+2
(frac{d^2 y}{dx^2})=48x2
(frac{d^2 y}{dx^2})-6 (frac{dy}{dx}=48x^2-96x^3-12)
=12(4x2-8x-1)
8. Find the second order derivative y=e2x+sin-1ex .
a) e2x+(frac{e^x}{(1-e^2x)^{3/2}})
b) 4e2x+(frac{1}{(1-e^2x)^{3/2}})
c) 4e2x–(frac{e^x}{(1-e^2x)^{3/2}})
d) 4e2x+(frac{e^x}{(1-e^2x)^{3/2}})
Answer: d
Clarification: Given that, y=e2x+sin-1ex
(frac{dy}{dx})=2e2x+(frac{1}{sqrt{1-e^{2x}}} e^x)
(frac{d^2 y}{dx^2} = 4e^2x+bigg(frac{frac{d}{dx} (e^x) sqrt{1-e^{2x}} – frac{d}{dx} (sqrt{1-e^{2x}}).e^x}{(sqrt{1-e^{2x}})^2}bigg))
(=4e^{2x}+frac{(e^x sqrt{1-e^{2x}})-e^x left(frac{1}{2sqrt{1-e^{2x}}}.-2e^{2x}right)}{1-e^{2x}})
(=4e^{2x}+frac{(e^x (1-e^{2x})+e^{3x})}{(1-e^{2x})^{frac{3}{2}}})
(=4e^{2x}+frac{e^x (1-e^{2x}+e^{2x})}{(1-e^{2x})^{frac{3}{2}}})
4e2x+(frac{e^x}{(1-e^2x)^{3/2}}).
9. Find the second order derivative of y=3x2 1 + log(4x)
a) 3+(frac{1}{x^2})
b) 3-(frac{1}{x^2})
c) 6-(frac{1}{x^2})
d) 6+(frac{1}{x^2})
Answer: c
Clarification: Given that, y=3x2+log(4x)
(frac{dy}{dx}=6x+frac{1}{4x}.4=6x+frac{1}{x}=frac{6x^2+1}{x})
(frac{d^2 y}{dx^2}=frac{frac{d}{dx} (6x^2+1).(x)-frac{d}{dx} (x).(6x^2+1)}{x^2} Big(using, frac{d}{dx} (frac{u}{v})=frac{(frac{d}{dx} (u).v-frac{d}{dx} (v).u)}{v^2}Big))
(frac{d^2 y}{dx^2}=frac{(12x.x-6x^2-1)}{x^2} )
(frac{d^2 y}{dx^2}=frac{6x^2-1}{x^2} = 6-frac{1}{x^2}).
10. Find the second order derivative if y=e2x2.
a) 4e2x2 (4x2+3)
b) 4e2x2 (4x2-1)
c) 4e2x2 (4x2+1)
d) e2x2 (4x2+1)
Answer: c
Clarification: Given that, y=e2x2
(frac{dy}{dx})=e2x2.4x
By using u.v rule, we get
(frac{d^2 y}{dx^2}=frac{d}{dx} (e^{{2x}^2}).4x+frac{d}{dx} (4x).e^{{2x}^2})
16x2 e2x2+4e2x2=4e2x2 (4x2+1)