250+ TOP MCQs on Invertible Matrices | Class 12 Maths

Mathematics Multiple Choice Questions on “Invertible Matrices”.

1. Which among the following is inverse of the matrix A=(begin{bmatrix}2&3\5&1end{bmatrix}) ?
a) (begin{bmatrix}frac{1}{13}&frac{3}{13}\ frac{5}{13}&frac{-2}{13}end{bmatrix})
b) (begin{bmatrix}frac{-1}{13}&frac{3}{13}\ frac{5}{13}&frac{-2}{13}end{bmatrix})
c) (begin{bmatrix}frac{-1}{13}&frac{3}{13}\1&frac{-2}{13}end{bmatrix})
d) (begin{bmatrix}frac{-1}{13}&frac{3}{13}\ frac{5}{13}&-2end{bmatrix})
Answer: b
Clarification: Consider the matrix A=(begin{bmatrix}2&3\5&1end{bmatrix})
Using elementary row operation, we write A=IA.
(begin{bmatrix}2&3\5&1end{bmatrix})=(begin{bmatrix}1&0\0&1end{bmatrix})A
(begin{bmatrix}-13&0\5&1end{bmatrix})=(begin{bmatrix}1&-3\0&1end{bmatrix})A   (Applying R1→R1-3R2)
(begin{bmatrix}1&0\5&1end{bmatrix})=(begin{bmatrix}frac{-1}{13}&frac{3}{13}\0&1end{bmatrix})A   (Applying (R_1 rightarrow -frac{R_1}{13}))
(begin{bmatrix}1&0\0&1end{bmatrix})=(begin{bmatrix}frac{-1}{13}&frac{3}{13}\ frac{5}{13}&frac{-2}{13}end{bmatrix})A   (Applying R2→R2-5R1)
(A^{-1}=begin{bmatrix}frac{-1}{13}&frac{3}{13}\ frac{5}{13}&frac{-2}{13}end{bmatrix}).

2. Which of the following matrices will not have an inverse?
a) (begin{bmatrix}2&4\-1&1end{bmatrix})
b) (begin{bmatrix}1&5&2\6&4&2\1&3&2end{bmatrix})
c) (begin{bmatrix}1&2\1&1end{bmatrix})
d) (begin{bmatrix}1&2&5\3&6&4end{bmatrix})
Answer: d
Clarification: The matrix A=(begin{bmatrix}1&2&5\3&6&4end{bmatrix}) will not have an inverse as it is a rectangular matrix. Rectangular matrix does not possess an inverse matrix.

3. If A and B are invertible matrices of the same order, then (AB)-1=B-1 A-1.
a) True
b) False
Answer: a
Clarification: The given statement is true.
(AB) (AB)-1=I (Using the formula AA-1=I)
Multiplying both sides by A-1, we get
A-1 (AB) (AB)-1=A-1 I
(A-1 A)B(AB)-1=A-1
IB(AB-1)=A-1
B(AB-1)=A-1
⇒B-1 B(AB-1)=B-1 A-1
(AB-1)=B-1 A-1

4. A matrix A is invertible if it has all zeroes in one or more rows on L.H.S.
a) True
b) False
Answer: b
Clarification: The given statement is false. A matrix is non-invertible if it has all zeroes in one or more rows on L.H.S. This is because after applying all the elementary operations on the matrix, we should get an identity matrix on the L.H.S. to obtain an inverse of the given matrix, which is not possible if we obtain all zeroes in one or more rows.

5. The inverse of the matrix A=(begin{bmatrix}1&2&4\5&2&4\3&6&2end{bmatrix}) is
a) (begin{bmatrix}frac{-1}{4}&frac{1}{4}&0\ frac{1}{40}&frac{-1}{8}&frac{1}{5}\ frac{3}{40}&1&frac{-1}{10}end{bmatrix})
b) (begin{bmatrix}frac{-1}{4}&frac{1}{4}&1\ frac{1}{40}&frac{-1}{8}&frac{1}{5}\ frac{3}{40}&0&frac{-1}{10}end{bmatrix})
c) (begin{bmatrix}frac{-1}{4}&frac{1}{4}&0\ frac{1}{40}&frac{-1}{8}&frac{1}{5}\ frac{3}{40}&0&frac{-1}{10}end{bmatrix})
d) (begin{bmatrix}frac{-1}{4}&-frac{1}{4}&0\ frac{1}{40}&frac{1}{8}&frac{-1}{5}\ frac{3}{40}&0&frac{-1}{10}end{bmatrix})
Answer: c
Clarification: Consider the matrix A=(begin{bmatrix}1&2&4\5&2&4\3&6&2end{bmatrix})
Using the elementary row operation, we write A=IA
(begin{bmatrix}1&2&4\5&2&4\3&6&2end{bmatrix})=(begin{bmatrix}1&0&0\0&1&0\0&0&1end{bmatrix})A
Applying R1→R1-R2
(R_1 rightarrow frac{R_1}{-4})
(begin{bmatrix}1&0&0\5&2&4\3&6&2end{bmatrix})=(begin{bmatrix}frac{-1}{4}&frac{1}{4}&0\0&1&0\0&0&1end{bmatrix})A
Applying R2→R2-5R1 and R3→R3-3R1
(begin{bmatrix}1&0&0\0&2&4\0&6&2end{bmatrix})=(begin{bmatrix}frac{-1}{4}&frac{1}{4}&0\frac{5}{4}&frac{-1}{4}&0\frac{3}{4}&frac{-3}{4}&1end{bmatrix})A
Applying R2→R2-2R3 and (R_2 rightarrow frac{R_2}{-10})
(begin{bmatrix}1&0&0\0&1&0\0&6&2end{bmatrix})=(begin{bmatrix}frac{-1}{4}&frac{1}{4}&0\ frac{1}{40}&frac{-5}{40}&frac{1}{5}\frac{3}{4}&frac{-3}{4}&1end{bmatrix})A
Applying R3→R3-6R2 and (R_2 rightarrow frac{R_2}{2})
(begin{bmatrix}1&0&0\0&1&0\0&0&1end{bmatrix})=(begin{bmatrix}frac{-1}{4}&frac{1}{4}&0\ frac{1}{40}&frac{-1}{8}&frac{1}{5}\ frac{3}{40}&0&frac{-1}{10}end{bmatrix})A
A-1=(begin{bmatrix}frac{-1}{4}&frac{1}{4}&0\ frac{1}{40}&frac{-1}{8}&frac{1}{5}\ frac{3}{40}&0&frac{-1}{10}end{bmatrix}).

6. Which of the following is the inverse of the matrix A=(begin{bmatrix}8&1\1&2end{bmatrix})?
a) (begin{bmatrix}frac{2}{15}&-frac{1}{15}\frac{1}{15}&frac{8}{15}end{bmatrix})
b) (begin{bmatrix}frac{1}{15}&-frac{1}{15}\-frac{1}{15}&frac{1}{15}end{bmatrix})
c) (begin{bmatrix}frac{2}{15}&-frac{1}{15}\-frac{1}{15}&frac{8}{15}end{bmatrix})
d) (begin{bmatrix}frac{2}{15}&frac{1}{15}\frac{1}{15}&frac{4}{15}end{bmatrix})
Answer: c
Clarification: Consider the matrix A=(begin{bmatrix}8&1\1&2end{bmatrix})
Using the elementary row operation, we write A=IA
Applying R2→8R2-R1 and R2→R2/15, we get
(begin{bmatrix}8&1\0&1end{bmatrix})=(begin{bmatrix}1&0\-frac{1}{15}&frac{8}{15}end{bmatrix})A
Applying R1→R1-R2 and R1→R1/8, we get
(begin{bmatrix}1&0\0&1end{bmatrix})=(begin{bmatrix}frac{2}{15}&-frac{1}{15}\-frac{1}{15}&frac{8}{15}end{bmatrix})A
A-1=(begin{bmatrix}frac{2}{15}&-frac{1}{15}\-frac{1}{15}&frac{8}{15}end{bmatrix}).

7. Which among the below matrices has the inverse A-1=(begin{bmatrix}1&-frac{5}{8}\0&frac{1}{8}end{bmatrix})
a) (begin{bmatrix}1&5\0&8end{bmatrix})
b) (begin{bmatrix}1&5\-1&8end{bmatrix})
c) (begin{bmatrix}1&5\0&16end{bmatrix})
d) (begin{bmatrix}1&8\0&8end{bmatrix})
Answer: a
Clarification: Consider the matrix A=(begin{bmatrix}1&5\0&8end{bmatrix})
Using the elementary column operations, we write A=AI
(begin{bmatrix}1&5\0&8end{bmatrix})=A(begin{bmatrix}1&0\0&1end{bmatrix})
Applying C2→C2-5C1
(begin{bmatrix}1&0\0&8end{bmatrix})=A(begin{bmatrix}1&-5\0&1end{bmatrix})
Applying C2→C2/8
(begin{bmatrix}1&0\0&1end{bmatrix})=A(begin{bmatrix}1&-frac{5}{8}\0&frac{1}{8}end{bmatrix})
A-1=(begin{bmatrix}1&-frac{5}{8}\0&frac{1}{8}end{bmatrix}).

8. Find the inverse of matrix A=(begin{bmatrix}5&1&3\4&2&6\5&4&2end{bmatrix})
a) (begin{bmatrix}0&-frac{1}{6}&0\-frac{11}{30}&frac{1}{12}&frac{3}{10}\-frac{1}{10}&frac{1}{4}&-frac{1}{10}end{bmatrix})
b) (begin{bmatrix}frac{1}{3}&-frac{1}{6}&0\-frac{11}{30}&frac{1}{12}&frac{3}{10}\-frac{1}{10}&frac{1}{4}&-frac{1}{10}end{bmatrix})
c) (begin{bmatrix}frac{1}{3}&-frac{1}{6}&0\-frac{11}{30}&1&frac{3}{10}\-frac{1}{10}&frac{1}{4}&-frac{1}{10}end{bmatrix})
d) (begin{bmatrix}frac{1}{3}&frac{1}{6}&0\frac{11}{30}&frac{1}{12}&frac{3}{10}\-frac{1}{10}&frac{1}{4}&frac{1}{10}end{bmatrix})
Answer: b
Clarification: Consider the matrix A=(begin{bmatrix}5&1&3\4&2&6\5&4&2end{bmatrix})
Using the elementary row operations, we write A=IA
(begin{bmatrix}5&1&3\4&2&6\5&4&2end{bmatrix})=(begin{bmatrix}1&0&0\0&1&0\0&0&1end{bmatrix})A
Applying R2→5R2-4R1 and R3→R3-R1
(begin{bmatrix}5&1&3\0&6&18\0&3&-1end{bmatrix})=(begin{bmatrix}1&0&0\-4&5&0\-1&0&1end{bmatrix})A
Applying R1→R2-6R1 and R3→R2-2R3
(begin{bmatrix}-30&0&0\0&6&18\0&0&20end{bmatrix})=(begin{bmatrix}-10&5&0\-4&5&0\-2&5&-2end{bmatrix})A
Applying R2→20R2-18R3
(begin{bmatrix}-30&0&0\0&120&0\0&0&20end{bmatrix})=(begin{bmatrix}-10&5&0\-44&10&36\-2&5&-2end{bmatrix})A
Applying R1→R1/(-30), R2→R2/120, R3→R3/20
(begin{bmatrix}1&0&0\0&1&0\0&0&1end{bmatrix})=(begin{bmatrix}frac{1}{3}&-frac{1}{6}&0\-frac{11}{30}&frac{1}{12}&frac{3}{10}\-frac{1}{10}&frac{1}{4}&-frac{1}{10}end{bmatrix})A
A-1=(begin{bmatrix}frac{1}{3}&-frac{1}{6}&0\-frac{11}{30}&frac{1}{12}&frac{3}{10}\-frac{1}{10}&frac{1}{4}&-frac{1}{10}end{bmatrix}).

9. Which of the following is not a property of invertible matrices if A and B are matrices of the same order?
a) (AB)-1=A-1 B-1
b) (AA-1)=(A-1 A)=I
c) (AB)-1=B-1 A-1
d) AB=BA=I
Answer: a
Clarification: (AB)-1=A-1 B-1 is incorrect. The correct formula is (AB)-1=B-1 A-1. B-1 A-1 ≠ A-1 B-1 as matrix multiplication is not commutative.

10. Find the inverse of A=(begin{bmatrix}5&3\4&1end{bmatrix}).
a) (begin{bmatrix}-frac{1}{7}&frac{3}{7}\frac{4}{7}&-frac{5}{7}end{bmatrix})
b) (begin{bmatrix}-frac{1}{7}&frac{3}{7}\frac{4}{7}&frac{5}{7}end{bmatrix})
c) (begin{bmatrix}-frac{1}{7}&-frac{3}{7}\frac{4}{7}&-frac{5}{7}end{bmatrix})
d) (begin{bmatrix}0&frac{3}{7}\frac{4}{7}&frac{5}{7}end{bmatrix})
Answer: a
Clarification: Consider the matrix A=(begin{bmatrix}5&3\4&1end{bmatrix})
By using the elementary row operations, we write A=IA
(begin{bmatrix}5&3\4&1end{bmatrix})=(begin{bmatrix}1&0\0&1end{bmatrix})A
Applying R1→R1-3R2 and R1→R1/(-7), we get
(begin{bmatrix}1&0\4&1end{bmatrix})=(begin{bmatrix}-frac{1}{7}&frac{3}{7}\0&1end{bmatrix})
Applying R2→R2-4R1, we get
(begin{bmatrix}1&0\0&1end{bmatrix})=(begin{bmatrix}-frac{1}{7}&frac{3}{7}\frac{4}{7}&-frac{5}{7}end{bmatrix})A
⇒A-1=(begin{bmatrix}-frac{1}{7}&frac{3}{7}\frac{4}{7}&-frac{5}{7}end{bmatrix}).

250+ TOP MCQs on Second Order Derivatives | Class 12 Maths

Mathematics Multiple Choice Questions on “Second Order Derivatives”.

1. Find the second order derivative of y=9 log⁡ t3.
a) (frac{27}{t^2})
b) –(frac{27}{t^2})
c) –(frac{1}{t^2})
d) –(frac{27}{2t^2})
Answer: b
Clarification: Given that, y=9 log⁡t3
(frac{dy}{dx}=9.frac{1}{t^3}.3t^2=frac{27}{t})
(frac{d^2 y}{dx^2}=27(-frac{1}{t^2})=-frac{27}{t^2}).

2. Find (frac{d^2y}{dx^2}), if y=tan2⁡x+3 tan⁡x.
a) sec2⁡⁡x tan⁡x (2 tan⁡x+sec⁡x+3)
b) 2 sec2⁡⁡x tan⁡x (2 tan⁡x-sec⁡x+3)
c) 2 sec2⁡⁡x tan⁡x (2 tan⁡x+sec⁡x+3)
d) 2 sec2⁡⁡x tan⁡x (2 tan⁡x+sec⁡x-3)
Answer: c
Clarification: Given that, y=tan2⁡⁡x+3 tan⁡x
(frac{dy}{dx})=2 tan⁡x sec2⁡⁡x+3 sec2⁡x=sec2⁡⁡x (2 tan⁡x+3)
By using the u.v rule, we get
(frac{d^2 y}{dx^2}=frac{d}{dx}) (sec2⁡⁡x).(2 tan⁡x+3)+(frac{d}{dx}) (2 tan⁡x+3).sec2⁡⁡x
(frac{d^2 y}{dx^2})=2 sec2⁡⁡x tan⁡x (2 tan⁡x+3)+sec2⁡⁡x (2 sec⁡x tanx)
=2 sec2⁡x tan⁡x (2 tan⁡x+sec⁡x+3).

3. If y=6x2+3, then (left (frac{dy}{dx}right )^2=frac{d^2 y}{dx^2}).
a) True
b) False
Answer: b
Clarification: The given statement is false. Given that, y=6x2+3
(frac{dy}{dx})=12x
⇒(left (frac{dy}{dx}right )^2=(12x)^2=144x^2)
(frac{d^2 y}{dx^2}=frac{d}{dx}) (12x)=12
∴(left (frac{dy}{dx}right )^2≠frac{d^2 y}{dx^2})

4. Find the second order derivative of y=2e2x-3 log⁡(2x-3).
a) 8e2x+(frac{1}{(2x-3)^2})
b) 8e2x–(frac{12}{(2x-3)^2})
c) e2x+(frac{12}{(2x-3)^2})
d) 8e2x+(frac{12}{(2x-3)^2})
Answer: d
Clarification: Given that, y=2e2x-3 log⁡(2x-3)
(frac{dy}{dx})=4e2x-3.(frac{1}{(2x-3)}).2=4e2x–(frac{6}{(2x-3)})
(frac{d^2 y}{dx^2}=frac{d}{dx} (frac{dy}{dx}))=8e2x+(frac{12}{(2x-3)^2})

5. Find (frac{d^2 y}{dx^2}), if y=2 sin-1⁡(cos⁡x).
a) 0
b) sin-1((frac{1}{cos⁡x}))
c) 1
d) -1
Answer: a
Clarification: Given that, y=2 sin-1⁡(cos⁡x)
(frac{dy}{dx}=2.frac{1}{sqrt{1-cos^2⁡x}}).-sin⁡x=-2 (∵(sqrt{1-cos^2⁡x})=sin⁡x)
(frac{d^2 y}{dx^2})=(frac{d}{dx} (frac{dy}{dx})=frac{d}{dx}) (-2)=0

6. If y=log⁡(2x3), find (frac{d^2 y}{dx^2}).
a) –(frac{2}{x^2})
b) (frac{3}{x^2})
c) (frac{2}{x^2})
d) –(frac{3}{x^2})
Answer: d
Clarification: Given that, y=log⁡(2x3)
(frac{dy}{dx}=frac{1}{(2x^3)}.6x^2=frac{3}{x})
(frac{d^2 y}{dx^2}=-frac{3}{x^2})

7. Find (frac{d^2 y}{dx^2})-6 (frac{dy}{dx}) if y=4x4+2x.
a) ((4x^2+8x-1))
b) (12(4x^2+8x-1))
c) –(12(4x^2+8x-1))
d) (12(4x^2-8x-1))
Answer: d
Clarification: Given that, (y=4x^4+2x)
(frac{dy}{dx})=16x3+2
(frac{d^2 y}{dx^2})=48x2
(frac{d^2 y}{dx^2})-6 (frac{dy}{dx}=48x^2-96x^3-12)
=12(4x2-8x-1)

8. Find the second order derivative y=e2x+sin-1⁡ex .
a) e2x+(frac{e^x}{(1-e^2x)^{3/2}})
b) 4e2x+(frac{1}{(1-e^2x)^{3/2}})
c) 4e2x–(frac{e^x}{(1-e^2x)^{3/2}})
d) 4e2x+(frac{e^x}{(1-e^2x)^{3/2}})
Answer: d
Clarification: Given that, y=e2x+sin-1⁡ex
(frac{dy}{dx})=2e2x+(frac{1}{sqrt{1-e^{2x}}} e^x)
(frac{d^2 y}{dx^2} = 4e^2x+bigg(frac{frac{d}{dx} (e^x) sqrt{1-e^{2x}} – frac{d}{dx} (sqrt{1-e^{2x}}).e^x}{(sqrt{1-e^{2x}})^2}bigg))
(=4e^{2x}+frac{(e^x sqrt{1-e^{2x}})-e^x left(frac{1}{2sqrt{1-e^{2x}}}.-2e^{2x}right)}{1-e^{2x}})
(=4e^{2x}+frac{(e^x (1-e^{2x})+e^{3x})}{(1-e^{2x})^{frac{3}{2}}})
(=4e^{2x}+frac{e^x (1-e^{2x}+e^{2x})}{(1-e^{2x})^{frac{3}{2}}})
4e2x+(frac{e^x}{(1-e^2x)^{3/2}}).

9. Find the second order derivative of y=3x2 1 + log⁡(4x)
a) 3+(frac{1}{x^2})
b) 3-(frac{1}{x^2})
c) 6-(frac{1}{x^2})
d) 6+(frac{1}{x^2})
Answer: c
Clarification: Given that, y=3x2+log⁡(4x)
(frac{dy}{dx}=6x+frac{1}{4x}.4=6x+frac{1}{x}=frac{6x^2+1}{x})
(frac{d^2 y}{dx^2}=frac{frac{d}{dx} (6x^2+1).(x)-frac{d}{dx} (x).(6x^2+1)}{x^2} Big(using, frac{d}{dx} (frac{u}{v})=frac{(frac{d}{dx} (u).v-frac{d}{dx} (v).u)}{v^2}Big))
(frac{d^2 y}{dx^2}=frac{(12x.x-6x^2-1)}{x^2} )
(frac{d^2 y}{dx^2}=frac{6x^2-1}{x^2} = 6-frac{1}{x^2}).

10. Find the second order derivative if y=e2x2.
a) 4e2x2 (4x2+3)
b) 4e2x2 (4x2-1)
c) 4e2x2 (4x2+1)
d) e2x2 (4x2+1)
Answer: c
Clarification: Given that, y=e2x2
(frac{dy}{dx})=e2x2.4x
By using u.v rule, we get
(frac{d^2 y}{dx^2}=frac{d}{dx} (e^{{2x}^2}).4x+frac{d}{dx} (4x).e^{{2x}^2})
16x2 e2x2+4e2x2=4e2x2 (4x2+1)

250+ TOP MCQs on Fundamental Theorem of Calculus-1 | Class 12 Maths

Mathematics Multiple Choice Questions on “Fundamental Theorem of Calculus-1”.

1. Find (int_0^8x ,dx).
a) 32
b) 34
c) 21
d) 24
Answer: a
Clarification: Let I=(int_0^8x ,dx)
F(x)=(int x ,dx=frac{x^2}{2})
Using the second fundamental theorem of calculus, we get
I=F(8)-f(0)
∴(int_0^8x ,dx=frac{8^2}{2}-0=32)

2. Find (int_0^{frac{π}{2}} ,5 ,sin⁡x ,dx).
a) -5
b) 9
c) 5
d) -9
Answer: c
Clarification: Let (I=int_0^{frac{π}{2}} ,5 ,sin⁡x ,dx)
F(x)=(int5 ,sin⁡x ,dx=-5 ,cos⁡x)
Applying the limits by using the fundamental theorem of calculus, we get
I=F((frac{π}{2}))-F(0)
∴(int_0^{frac{π}{2}} ,5 ,sin⁡x ,dx=-5[cos⁡frac{π}{2}-cos⁡0])
=-5[0-1]=5

3. Find the value of (int_4^5 ,log⁡x ,dx).
a) 5 log⁡5-log⁡4+1
b) 5 log⁡5-4 log⁡4-1
c) 4 log⁡5-4 log⁡4-1
d) 5-4 log⁡4-log⁡5
Answer: b
Clarification: Let I=(int_4^5 ,log⁡x ,dx).
F(x)=∫ log⁡x dx
By using the formula (int ,u.v dx=u int v ,dx-int u'(int ,v ,dx)), we get
(int log ⁡x ,dx=log⁡x int ,dx-int(log⁡x)’int ,dx)
F(x)=x log⁡x-∫ dx=x(log⁡x-1).
Applying the limits using the fundamental theorem of calculus, we get
I=F(5)-F(4)=(5 log⁡5-5)-(4 log⁡4-4)
=5 log⁡5-4 log⁡4-1.

4. Find (int_0^{frac{π}{4}} ,9 ,cos^2⁡x ,dx).
a) (frac{9}{2}left (frac{π}{6}-1right))
b) (frac{9}{4}left (frac{π}{2}+1right))
c) (frac{9}{4}left (frac{π}{2}-1right))
d) (left (frac{π}{2}-1right))
Answer: c
Clarification: Let I=(int_0^{frac{π}{4}} ,9 ,cos^2⁡x ,dx).
F(x)=(int ,9 ,cos^2⁡x ,dx)
=9(int(frac{1+cos⁡2x}{2})dx)
=(frac{9}{2} (x-frac{sin⁡2x}{2}))
Applying the limits, we get
I=(F(frac{π}{4})-F(0)=frac{9}{2} left (frac{π}{4}-frac{sin⁡2(frac{π}{4})}{2}right)-frac{9}{2} (0-frac{sin⁡0}{2}))
=(frac{9}{2}left (frac{π}{4}-frac{sin⁡π/2}{2}right )=frac{9}{4} (π/2-1))

5. Find (int_0^2 ,e^{2x} ,dx).
a) (frac{e^4-1}{6})
b) (frac{e^4+1}{2})
c) (frac{e-1}{2})
d) (frac{e^4-1}{2})
Answer: d
Clarification: Let (I=int_0^2 ,e^2x ,dx)
F(x)=(int e^{2x} dx)
=(frac{e^{2x}}{2})
Applying the limits, we get
I=F(2)-F(0)
=(frac{e^2(2)}{2}-frac{e^2(0)}{2}=frac{(e^4-1)}{2}).

6. Find (int_{π/4}^{π/2} ,2sinx ,sin⁡(cos⁡x) ,dx).
a) 2(1-cos⁡(frac{1}{sqrt{2}}))
b) (cos⁡(frac{1}{sqrt{2}})-cos⁡1)
c) 2(cos⁡(frac{1}{sqrt{2}})+1)
d) (cos⁡(frac{1}{sqrt{2}})+cos⁡1)
Answer: a
Clarification: Let (I=int_{π/4}^{π/2} ,2sinx ,sin⁡(cos⁡x) ,dx)
F(x)=(int 2 ,sin⁡x ,sin⁡(cos⁡x)dx)
Let cos⁡x=t
Differentiating w.r.t x, we get
sin⁡x dx=dt
∴(int 2 ,sin⁡x ,sin⁡(cos⁡x)dx=int 2 ,sin⁡t ,dt=-2 ,cos⁡t)
Replacing t with cos⁡x, we get
∴∫ 2 sin⁡x sin⁡(cos⁡x)dx=-2 cos⁡(cos⁡x)
By applying the limits, we get
(I=F(frac{π}{4})-F(frac{π}{2})=-2 cos⁡(frac{cos⁡π}{4})+2 cos⁡(frac{cos⁡π}{2}))
=2(1-cos⁡(frac{1}{sqrt{2}}))

7. Find (int_{-2}^1 ,5x^4 ,dx).
a) 54
b) 75
c) 33
d) 36
Answer: c
Clarification: (I=int_{-2}^1 ,5x^4 ,dx)
F(x)=(int5x^4 ,dx=5(frac{x^5}{5})=x^5)
Applying the limits by using the fundamental theorem of calculus, we get
I=F(1)-F(-2)
=(1)5-(-2)5=1+32=33.

8. Find (int_0^3 ,e^x ,dx).
a) e3+1
b) -e3-1
c) e3-1
d) 3e3-2
Answer: c
Clarification: Let I=(int_0^3 ,e^x ,dx)
F(x)=(int ,e^x ,dx=e^x)
Applying the limits, we get
I=F(3)-F(0)
=e3-e0=e3-1.

9. Find (int_0^{π/4} ,2 ,tan⁡x ,dx).
a) log⁡2
b) log⁡(sqrt{2})
c) 2 log⁡2
d) 0
Answer: a
Clarification: (I=int_0^{π/4} ,2 ,tan⁡x ,dx)
F(x)=∫ 2 tan⁡x dx
=2∫ tan⁡x dx
=2 log⁡|sec⁡x|
Therefore, by using the fundamental theorem of calculus, we get
I=F(π/4)-F(0)
(=2left(log⁡|sec frac{⁡π}{4}|-log⁡|sec⁡0|right)=2 log⁡sqrt{2}-log⁡1)
(=2 log⁡sqrt{2}=log⁡(sqrt{2})^2=log⁡2)
I=(frac{8}{3} log⁡2-frac{8}{3}-0+frac{1}{3}=frac{8}{3} log⁡2-frac{7}{3}).

10. Find (int_{-1}^1 ,2xe^x ,dx).
a) (frac{4}{e})
b) 4e
c) –(frac{4}{e})
d) -4e
Answer: a
Clarification: (I=int_{-1}^1 ,2xe^x ,dx)
F(x)=(int 2xe^x dx)
By using the formula, (int u.v ,dx=u int v ,dx-int u'(int v ,dx))
F(x)=2x(int e^x dx-int(2x)’int e^x ,dx)
=(2xe^x-int 2e^x dx)
=(2e^x (x-1))
Therefore, by using the fundamental theorem of calculus, we get
I=F(1)-F(-1)
I=2e1 (1-1)-2e-1 (-1-1)
I=(frac{4}{e}).

250+ TOP MCQs on Product of Two Vectors-2 | Class 12 Maths

Mathematics Question Papers for Class 12 on “Product of Two Vectors-2”.

1. Evaluate the product ((2vec{a}+5vec{b}).(4vec{a}-5vec{b})).
a) (|vec{a}|^2+2vec{a}.vec{b}-15|vec{b}|^2)
b) (8|vec{a}|^2+2vec{a}.vec{b}-15|vec{b}|^2)
c) (8|vec{a}|^2-4vec{a}.vec{b}-15|vec{b}|^2)
d) (|vec{a}|^2+vec{a}.vec{b}-5|vec{b}|^2)
Answer: b
Clarification: To evaluate: ((2vec{a}+5vec{b}).(4vec{a}-5vec{b}))
=(2vec{a}.4vec{a}-2vec{a}.5vec{b}+3vec{b}.4vec{a}-3vec{b}.5vec{b})
=(8|vec{a}|^2+2vec{a}.vec{b}-15|vec{b}|^2)

2. Find the magnitude of (vec{a}) and (vec{b}) which are having the same magnitude and such that the angle between them is 60° and their scalar product is (frac{1}{4}).
a) (|vec{a}|=|vec{b}|=frac{1}{2√2})
b) (|vec{a}|=|vec{b}|=frac{1}{√2})
c) (|vec{a}|=|vec{b}|=frac{1}{2√3})
d) (|vec{a}|=|vec{b}|=frac{2}{√3})
Answer: a
Clarification: Given that: a) (|vec{a}|=|vec{b}|)
b) θ=60°
c) (vec{a}.vec{b}=frac{1}{4})
∴(|vec{a}||vec{b}| cos⁡θ=frac{1}{4})
=(|vec{a}|^2 cos⁡60°=frac{1}{4})
⇒(|vec{a}|^2=frac{1}{4}.frac{1}{2})
∴(|vec{a}|=|vec{b}|=frac{1}{2√2}).

3. If (vec{a}=hat{i}-hat{j}+3hat{k}, ,vec{b}=5hat{i}-2hat{j}+hat{k} ,and ,vec{c}=hat{i}-hat{j}) are such that (vec{a}+μvec{b}) is perpendicular to (vec{c}), then the value of μ.
a) (frac{7}{2})
b) –(frac{7}{2})
c) –(frac{3}{2})
d) (frac{7}{9})
Answer: b
Clarification: Given that: (vec{a}=hat{i}-hat{j}+3hat{k}, ,vec{b}=5hat{i}-2hat{j}+hat{k} ,and ,vec{c}=hat{i}-hat{j})
Also given, (vec{a}+μvec{b}) is perpendicular to (vec{c})
Therefore, ((vec{a}+μvec{b}).vec{c}=0)
i.e. ((hat{i}-hat{j}+3hat{k}+μ(5hat{i}-2hat{j}+hat{k})).(hat{i}-hat{j}))=0
(((1+5μ) ,hat{i}-(1+2μ) ,hat{j}+(μ+3) ,hat{k}).(hat{i}-hat{j}))=0
1+5μ+1+2μ=0
μ=-(frac{7}{2}).

4. Find the angle between (vec{a} ,and ,vec{b}) if (|vec{a}|=2,|vec{b}|=frac{1}{2√3}) and (vec{a}×vec{b}=frac{1}{2}).
a) (frac{2π}{3})
b) (frac{4π}{5})
c) (frac{π}{3})
d) (frac{π}{2})
Answer: c
Clarification: Given that, (|vec{a}|=2, ,|vec{b}|=frac{1}{2√3}) and (vec{a}×vec{b}=frac{1}{2})
We know that, (vec{a}×vec{b}=vec{a}.vec{b} ,sin⁡θ)
∴ (sin⁡θ=frac{(vec{a}×vec{b})}{|vec{a}|.|vec{b}|})
sin⁡θ=(frac{frac{1}{2}}{2×frac{1}{2√3}}=frac{sqrt{3}}{2})
θ=(sin^{-1}⁡frac{sqrt{3}}{2}=frac{π}{3})

5. Find the vector product of the vectors (vec{a}=2hat{i}+4hat{j}) and (vec{b}=3hat{i}-hat{j}+2hat{k}).
a) (hat{i}-19hat{j}-4hat{k})
b) (3hat{i}+19hat{j}-14hat{k})
c) (3hat{i}-19hat{j}-14hat{k})
d) (3hat{i}+5hat{j}+4hat{k})
Answer: c
Clarification: Given that, (vec{a}=2hat{i}+4hat{j}) and (vec{b}=3hat{i}-hat{j}+2hat{k})
Calculating the vector product, we get
(vec{a}×vec{b}=begin{vmatrix}hat{i}&hat{j}&hat{k}\2&4&-5\3&-1&2end{vmatrix})
=(hat{i}(8-5)-hat{j}(4-(-15))+hat{k}(-2-12))
=(3hat{i}-19hat{j}-14hat{k})

6. If (vec{a} ,and ,vec{b}) are two non-zero vectors then ((vec{a}-vec{b})×(vec{a}+vec{b}))=_________
a) (2(vec{a}×vec{b}))
b) ((vec{a}×vec{b}))
c) –(4(vec{a}×vec{b}))
d) (3(vec{a}×vec{b}))
Answer: a
Clarification: Consider ((vec{a}-vec{b})×(vec{a}+vec{b}))
=((vec{a}-vec{b})×vec{a}+(vec{a}+vec{b})×vec{b})
=(vec{a}×vec{a}-vec{b}×vec{a}+vec{a}×vec{b}-vec{b}×vec{b})
We know that, (vec{a}×vec{a}=0,vec{b}×vec{b}=0 ,and ,vec{a}×vec{b}=-vec{b}×vec{a})
∴ (vec{a}×vec{a}-vec{b}×vec{a}+vec{a}×vec{b}-vec{b}×vec{b}=0+2(vec{a}×vec{b})+0)
Hence, ((vec{a}-vec{b})×(vec{a}+vec{b})=2(vec{a}×vec{b}))

7. Find the product ((vec{a}+vec{b}).(7vec{a}-6vec{b})).
a) (2|vec{a}|^2+6vec{a}.vec{b}-3|vec{b}|^2)
b) (8|vec{a}|^2+5vec{a}.vec{b}-5|vec{b}|^2)
c) (2|vec{a}|^2+6vec{a}.vec{b}-8|vec{b}|^2)
d) (7|vec{a}|^2+vec{a}.vec{b}-6|vec{b}|^2)
Answer: d
Clarification: To evaluate: ((vec{a}+vec{b}).(7vec{a}-6vec{b}))
=(vec{a}.7vec{a}-vec{a}.6vec{b}+vec{b}.7vec{a}-6vec{b}.vec{b})
=(7|vec{a}|^2+vec{a}.vec{b}-6|vec{b}|^2)

8. Find the vector product of the vectors (vec{a}=-hat{j}+hat{k}) and (vec{b}=-hat{i}-hat{j}-hat{k}).
a) (2hat{i}-hat{j}+hat{k})
b) (2hat{i}-hat{j}-4hat{k})
c) (hat{i}+hat{j}-hat{k})
d) (2hat{i}-hat{j}-hat{k})
Answer: d
Clarification: Given that, (vec{a}=-hat{j}+hat{k}) and (vec{b}=-hat{i}-hat{j}-hat{k})
Calculating the vector product, we get
(vec{a}×vec{b}=begin{vmatrix}hat{i}&hat{j}&hat{k}\0&-1&1\-1&-1&-1end{vmatrix})
=(hat{i}(1-(-1))-hat{j}(0-(-1))+hat{k}(0-1))
=(2hat{i}-hat{j}-hat{k})

9. If (vec{a}=2hat{i}+3hat{j}+4hat{k}) and (vec{b}=4hat{i}-2hat{j}+3hat{k}). Find (|vec{a}×vec{b}|).
a) (sqrt{685})
b) (sqrt{645})
c) (sqrt{679})
d) (sqrt{689})
Answer: b
Clarification: Given that, (vec{a}=2hat{i}+3hat{j}+4hat{k}) and (vec{b}=4hat{i}-2hat{j}+3hat{k})
∴ (vec{a}×vec{b}=begin{vmatrix}hat{i}&hat{j}&hat{k}\2&3&4\4&-2&3end{vmatrix})
=(hat{i}(9—8)-hat{j}(6-16)+hat{k}(-4-12))
=(17hat{i}+10hat{j}-16hat{k})
∴(|vec{a}×vec{b}|=sqrt{17^2+10^2+(-16)^2})
=(sqrt{289+100+256})
=(sqrt{645})

10. Find the angle between the vectors if (|vec{a}|=|vec{b}|=3sqrt{2}) and (vec{a}.vec{b}=9sqrt{3}).
a) (frac{π}{6})
b) (frac{π}{5})
c) (frac{π}{3})
d) (frac{π}{2})
Answer: a
Clarification: We know that, (vec{a}.vec{b}=|vec{a}|.|vec{b}| ,cos⁡θ)
Given that, (|vec{a}|=|vec{b}|=3sqrt{2} ,and ,vec{a}.vec{b}=9sqrt{3})
(cos⁡θ=frac{vec{a}.vec{b}}{|vec{a}|.|vec{b}|}=frac{9sqrt{3}}{(3sqrt{2})^2}=frac{sqrt{3}}{2})
(θ=cos^{-1}frac{sqrt{3}}{2}=frac{π}{6}).

Mathematics Question Papers for Class 12,

250+ TOP MCQs on Calculus Application – Tangents and Normals | Class 12 Maths

Mathematics Multiple Choice Questions on “Calculus Application – Tangents and Normals – 1”.

1. What is the equation of the tangent at a specific point of y2 = 4ax at (0, 0)?
a) x = 0
b) x = 1
c) x = 2
d) x = 3
Answer: a
Clarification: Equation of the given parabola is y2 = 4ax ……….(1)
Differentiating both side of (1) with respect to x we get,
2y(dy/dx) = 4a
Or dy/dx = 2a/y
Clearly dy/dx does not exist at (0, 0). Hence, the tangent to the parabola (1) at (0, 0) is parallel to y axis.
Again, the tangent passes through (0, 0). Therefore, the required tangent to the parabola (1) at (0, 0) is the y-axis and hence the required equation of the tangent is x = 0.

2. If X and Y are given as current co-ordinates, what is the equation of the tangent at a specific point of x3 – 3axy + y3 = 0 at (x, y)?
a) (x2 – ay)X + (y2 – ax)Y = -2axy
b) (x2 – ay)X + (y2 – ax)Y = 2axy
c) (x2 – ay)X + (y2 – ax)Y = axy
d) (x2 – ay)X + (y2 – ax)Y = -axy
Answer: c
Clarification: Equation of the given curve is, x3 – 3axy + y3 = 0 ……….(1)
Differentiating both sides with respect to x we get,
3x2 – 3a(x(dy/dx) + y) + 3y2(dy/dx) = 0
Or dy/dx = (ay – x2)/(y2 – ax)
So, it is clear that this can be written as,
Y – y = (dy/dx)(X – x)
Or Y – y = [(ay – x2)/(y2 – ax)](X – x)
Simplifying the above equation by cross multiplication, we get,
(x2 – ay)X + (y2 – ax)Y = x3 – 3axy + y3 + axy
Using (1),
(x2 – ay)X + (y2 – ax)Y = axy

3. What will be the equation of the normal to the hyperbola xy = 4 at the point (2, 2)?
a) x + y = 0
b) x – y = 0
c) 2x – y = 0
d) x + 2y = 0
Answer: b
Clarification: Equation of the given hyperbola is, xy = 4 ……….(1)
Differentiating both side of (1) with respect to y, we get,
y*(dx/dy) + x(1) = 0
Or dx/dy = -(x/y)
Thus, the required equation of the normal to the hyperbola at (2, 2) is,
y – 2 = -[dx/dy](2, 2) (x – 2) = -(-2/2)(x – 2)
So, from here,
y – 2 = x – 2
Or x – y = 0

4. At which point does the normal to the hyperbola xy = 4 at (2, 2) intersects the hyperbola again?
a) (-2, -2)
b) (-2, 2)
c) (2, -2)
d) (0, 2)
Answer: a
Clarification: Equation of the given hyperbola is, xy = 4 ……….(1)
Differentiating both side of (1) with respect to y, we get,
y*(dx/dy) + x(1) = 0
Or dx/dy = -(x/y)
Thus, the required equation of the normal to the hyperbola at (2, 2) is,
y – 2 = -[dx/dy](2, 2) (x – 2) = -(-2/2)(x – 2)
So, from here,
y – 2 = x – 2
Or x – y = 0 ……….(2)
Solving the equation (1) and (2) we get,
x = 2 and y = 2 or x = -2 and y = -2
Thus, the line (2) intersects the hyperbola (1) at (2, 2) and (-2, -2).
Hence, the evident is that the normal at (2, 2) to the hyperbola (1) again intersects it at (-2, -2).

5. What will be the equation of the tangent to the circle x2 + y2 – 6x + 4y – 7 = 0, which are perpendicular to the straight line 2x – y + 3 = 0?
a) x + 2y – 9 = 0
b) x + 2y + 9 = 0
c) x + 2y – 10 = 0
d) x + 2y + 10 = 0
Answer: a
Clarification: The equation of any straight line perpendicular to the line 2x – y + 3 = 0 is,
x + 2y + k = 0 ……….(1)
Now, the co-ordinate of the center of the circle (3, -2) and its radius is,
√(9 + 4 – (-7) = 2√5
If straight line (1) be tangent to the given circle then, the perpendicular distance of the point (3, -2) from the line (1) = radius of the circle
Thus, ±(3 + 2(-2) + k)/√(1 + 4)
Or k – 1 = 2√5 * √5
So, k = 1 ± 10
= 11 or -9
Putting the value of k in (1) we get,
x + 2y + 11 = 0 and x + 2y – 9 = 0

6. What is the equation of the tangent to the parabola y2 = 8x, which is inclined at an angle of 45° with the x axis?
a) x + y – 2 = 0
b) x + y + 2 = 0
c) x – y + 2 = 0
d) x – y – 2 = 0
Answer: c
Clarification: Equation of the given parabola is, y2 = 8x ……….(1)
Differentiating both sides with respect to x,
2y(dy/dx) = 8
Or dy/dx = 4/y
Thus, equation of the tangent to the parabola (1) at (x1, y1) = (2t2, 4t) is,
y – y1 = [dy/dx](x1, y1) (x – 2t2)
y – 4t = [dy/dx](2(t2), 4t) (x – 2t2)
Putting the value of y = 4t in the equation dy/dx = 4/y, we get,
y – 4t = 4/4t(x – 2t2) ……….(2)
If the tangent to the parabola y2 = 8x, which is inclined at an angle of 45° with the x axis,
Then, slope of tangent (2) = tan 45° = 1
Thus, 4/4t = 1
Or t = 1
Thus, required equation of the tangent is,
y– 4 = 1(x – 2)
Putting, t = 1 in (2),
So, x – y + 2 = 0

7. What will be the equation of the tangent to the circle x2 + y2 – 6x + 4y – 7 = 0, which are perpendicular to the straight line 2x – y + 3 = 0?
a) x – 2y + 11 = 0
b) x – 2y – 11 = 0
c) x + 2y + 11 = 0
d) x + 2y – 11 = 0
Answer: c
Clarification: The equation of any straight line perpendicular to the line 2x – y + 3 = 0 is,
x + 2y + k = 0 ……….(1)
Now, the co-ordinate of the center of the circle (3, -2) and its radius is,
√(9 + 4 – (-7) = 2√5
If straight line (1) be tangent to the given circle then, the perpendicular distance of the point (3, -2) from the line (1) = radius of the circle
Thus, ±(3 + 2(-2) + k)/√(1 + 4)
Or k – 1 = 2√5 * √5
So, k = 1 ± 10
= 11 or -9
Putting the value of k in (1) we get,
x + 2y + 11 = 0 and x + 2y – 9 = 0

8. What will be the equation of normal to the hyperbola 3x2 – 4y2 = 12 at the point (x1, y1)?
a) 3x1y + 4y1x + 7x1y1 = 0
b) 3x1y + 4y1x – 7x1y1 = 0
c) 3x1y – 4y1x – 7x1y1 = 0
d) 3x1y – 4y1x + 7x1y1 = 0
Answer: b
Clarification: Equation of the given hyperbola is, 3x2 – 4y2 = 12 ……….(1)
Differentiating both sides of (1) with respect to y we get,
3*2x(dy/dx) – 4*(2y) = 0
Or dx/dy = 4y/3x
Therefore, the equation of the normal to the hyperbola (1) at the point (x1, y1) on it is,
y – y1 = -[dx/dy](x1, y1) (x – x1) = -4y1/3x1(x – x1)
Or 3x1y + 4y1x – 7x1y1 = 0

9. What is the nature of the straight line x + y + 7 = 0 to the hyperbola 3x2 – 4y2 = 12 whose normal is at the point (x1, y1)?
a) Chord to hyperbola
b) Tangent to hyperbola
c) Normal to hyperbola
d) Segment to hyperbola
Answer: c
Clarification: Equation of the given hyperbola is, 3x2 – 4y2 = 12 ……….(1)
Differentiating both sides of (1) with respect to y we get,
3*2x(dy/dx) – 4*(2y) = 0
Or dx/dy = 4y/3x
Therefore, the equation of the normal to the hyperbola (1) at the point (x1, y1) on it is,
y – y1 = -[dx/dy](x1, y1) (x – x1) = -4y1/3x1(x – x1)
Or 3x1y + 4y1x – 7x1y1 = 0
Now, if possible, let us assume that the straight line
x + y + 7 = 0 ………..(2)
This line is normal to the hyperbola (1) at the point (x1, y1). Then, the equation (2) and (3) must be identical. Hence, we have,
3x1/1 = 4y1/1 = -7x1y1/7
So, x1 = -4 and y1 = -3
Now, 3x12 – 4y12 = 3(-4)2 – 4(-3)2 = 12
This shows the point (-4, -3) lies on the hyperbola (1).
Thus, it is evident that the straight line (3) is normal to the hyperbola (1).

10. What is the foot of the normal if the straight line x + y + 7 = 0 is normal to the hyperbola 3x2 – 4y2 = 12 whose normal is at the point (x1, y1)?
a) (4, 3)
b) (-4, 3)
c) (4, -3)
d) (-4, -3)
Answer: d
Clarification: Equation of the given hyperbola is, 3x2 – 4y2 = 12 ……….(1)
Differentiating both sides of (1) with respect to y we get,
3*2x(dy/dx) – 4*(2y) = 0
Or dx/dy = 4y/3x
Therefore, the equation of the normal to the hyperbola (1) at the point (x1, y1) on it is,
y – y1 = -[dx/dy](x1, y1) (x – x1) = -4y1/3x1(x – x1)
Or 3x1y + 4y1x – 7x1y1 = 0
Now, if possible, let us assume that the straight line
x + y + 7 = 0 ………..(2)
This line is normal to the hyperbola (1) at the point (x1, y1). Then, the equation (2) and (3) must be identical. Hence, we have,
3x1/1 = 4y1/1 = -7x1y1/7
So, x1 = -4 and y1 = -3
Now, 3x12 – 4y12 = 3(-4)2 – 4(-3)2 = 12
This shows the point (-4, -3) lies on the hyperbola (1).
So, it’s the normal to the hyperbola.
Thus, it is evident that the straight line (3) is normal to the hyperbola (1); the co-ordinate foot is (-4, -3).

250+ TOP MCQs on Determinant | Class 12 Maths

Mathematics Multiple Choice Questions on “Determinant – 1”.

1. Evaluate (begin{vmatrix}2&5\-1&-1end{vmatrix}).
a) 3
b) -7
c) 5
d) -2
Answer: a
Clarification: Expanding along R1, we get
∆=2(-1)-5(-1)=-2+5
=3.

2. Evaluate (begin{vmatrix}5&-4\1&sqrt{3}end{vmatrix}).
a) 4(sqrt{3})+4
b) 4(sqrt{3})+5
c) 5(sqrt{3})+4
d) 5(sqrt{3})-4
Answer: c
Clarification: Evaluating along R1, we get
∆=5((sqrt{3}))-(-4)1=5(sqrt{3})+4.

3. Evaluate (begin{vmatrix}-sinθ&-1\1&sin⁡θend{vmatrix}).
a) cos2⁡θ
b) -cos2⁡θ
c) cos⁡2θ
d) cos⁡θ
Answer: a
Clarification: Expanding along R1, we get
∆=-sinθ(sinθ)-(-1)1=-sin2⁡θ+1=cos2⁡θ.

4. Evaluate (begin{vmatrix}i&-1\-1&-iend{vmatrix}).
a) 4
b) 3
c) 2
d) 0
Answer: d
Clarification: Expanding along R1, we get
∆=-i(i)-(-1)(-1)=-i2-1=-(-1)-1=0.

5. Evaluate (begin{vmatrix}1&1&-2\3&4&5\-1&2&1end{vmatrix}).
a) -6
b) -34
c) 34
d) 22
Answer: b
Clarification: ∆=(begin{vmatrix}1&1&-2\3&4&5\-1&2&1end{vmatrix})
Expanding along the first row, we get
∆=1(begin{vmatrix}4&5\2&1end{vmatrix})-1(begin{vmatrix}3&5\-1&1end{vmatrix})-2(begin{vmatrix}3&4\-1&2end{vmatrix})
=1(4-5(2))-1(3-5(-1))-2(6-4(-1))
=(4-10)-(3+5)-2(6+4)
=-6-8-20=-34.

6. Evaluate (begin{vmatrix}5&4&3\3&4&1\5&6&1end{vmatrix}).
a) 4
b) -24
c) -8
d) 8
Answer: c
Clarification: Expanding along the first row, we get
∆=5(begin{vmatrix}4&1\6&1end{vmatrix})-4(begin{vmatrix}3&1\5&1end{vmatrix})+3(begin{vmatrix}3&4\5&6end{vmatrix})
=5(4-6)-4(3-5)+3(18-20)
=5(-2)-4(-2)+3(-2)=-10+8-6=-8.

7. Evaluate (begin{vmatrix}8x+1&2x-2\x^2-1&3x+5end{vmatrix}).
a) -2x3-26x2+45x+3
b) -2x3+26x2+45x+3
c) -2x3+26x2+45x-3
d) -2x3-26x2-45x+3
Answer: b
Clarification: Expanding along the first row, we get
∆=8x+1(3x+5)-(2x-2)(x2-1)
=(24x2+43x+5)-(2x3-2x2-2x+2)
=-2x3+26x2+45x+3.

8. If A=(begin{bmatrix}2&5&9\6&1&3\4&8&2end{bmatrix}), find |A|.
a) 352
b) 356
c) 325
d) 532
Answer: a
Clarification: Given that, A=(begin{bmatrix}2&5&9\6&1&3\4&8&2end{bmatrix})
⇒|A|=(begin{vmatrix}2&5&9\6&1&3\4&8&2end{vmatrix})
Evaluating along the first row, we get
∆=2(begin{vmatrix}1&3\8&2end{vmatrix})-5(begin{vmatrix}6&3\4&2end{vmatrix})+9(begin{vmatrix}6&1\4&8end{vmatrix})
∆=2(2-24)-5(12-12)+9(48-4)
∆=2(-22)-0+9(44)
∆=-44+9(44)=44(-1+9)=352

9. Evaluate (begin{vmatrix}sqrt{3}&sqrt{2}\-1&2sqrt{3}end{vmatrix}).
a) 6-3(sqrt{2})
b) 6-(sqrt{2})
c) 6+3(sqrt{2})
d) 6+(sqrt{2})
Answer: d
Clarification: ∆=(begin{vmatrix}sqrt{3}&sqrt{2}\-1&2sqrt{3}end{vmatrix})
∆=((sqrt{3})×2(sqrt{3}))+(sqrt{2})
∆=6+(sqrt{2}).

10. Find the value of x if (begin{vmatrix}3&x\2&x^2 end{vmatrix})=(begin{vmatrix}5&3\3&2end{vmatrix}).
a) x=1, –(frac{1}{3})
b) x=-1, –(frac{1}{3})
c) x=1, (frac{1}{3})
d) x=-1, (frac{1}{3})
Answer: a
Clarification: Given that (begin{vmatrix}3&x\2&x^2 end{vmatrix})=(begin{vmatrix}5&3\3&2end{vmatrix})
⇒3x2-2x=5(2)-3(3)
⇒3x2-2x=1
Solving for x, we get
x=1, –(frac{1}{3}).