250+ TOP MCQs on Pin Connections and Answers

Design of Steel Structures Multiple Choice Questions on “Pin Connections”.

1. What are pin connections?
a) structural members connected by bolts
b) structural members connected by cylindrical pins
c) structural members connected by bolts and pins
d) structural members connected by welding
Answer: b
Clarification: When two structural members are connected by means of cylindrical-shaped pins, the connection is known as pinned connection. It resists horizontal and vertical movement, but not moment.

2. Pin connections are provided when _______ required.
a) hinge joint
b) fixed joint
c) irrotational joint
d) rigid joint
Answer: a
Clarification: Pin connections are provided when hinged joints are required , where zero moments or free rotation is desired and horizontal and vertical movement are not desired.

3. Pins used for the connection _________
a) does not affect secondary stresses
b) increase secondary stresses
c) reduce secondary stresses
d) doubles secondary stresses
Answer: c
Clarification: Pins used for the connection reduce secondary stresses. It serves the same purpose as shank of bolt.

4. Forces acting on pin are ______ those on bolt
a) less than
d) equal to
c) half the force
d) greater than
Answer: d
Clarification: Since only one pin is present in the connection, forces acting on pin are greater than those on bolt.

5. In which of the following cases pin connections are not used?
a) truss bridge girders
b) hinged arches
c) tall buildings
d) diagonal bracing connection
Answer: c
Clarification: Pin connections are used in following cases : (i) truss bridge girders, (ii) hinged arches, (iii)tie rod connection in water tanks, (iv)as diagonal bracing connections in beams and columns, (v)chain-link cables suspension bridges.

6. Shear capacity of pin when rotation is allowed is given by
a) 0.5fypA
b) 0.6fypA
c) 0.7fypA
d) 0.8fypA
Answer: a
Clarification: Shear capacity of pin is given by (i) 0.5fypA, when rotation is required, (ii) 0.6fypA, when rotation is not required, where fyp=design strength of pin, A = cross sectional area of pin.

7. Bearing capacity of pin when rotation is not allowed is given by
a) 0.8fypdt
b) 0.6fypdt
c) 0.7fypdt
d) 1.5fypdt
Answer: d
Clarification: Bearing capacity of pin given by (i) 1.5fypA, when rotation is not required, (ii) 0.8fypdt, when rotation is not required, where fyp=design strength of pin.

8. Moment capcity of pin when rotation is not allowed is given by
a) 0.8fypZ
b) 0.6fypZ
c) 1.5fypZ
d) 2.0fypZ
Answer: c
Clarification: Moment capacity of pin given by (i) 1.5fypZ, when rotation is not required, (ii) 1.0fypdt, when rotation is not required, where fyp=design strength of pin, Z=section modulus of the pin.

9. Members joined by pin connections are separated some distance _____
a) to allow friction
b) to allow for bolt heads
c) to allow bending
d) to allow to be removed
Answer: b
Clarification: Members joined by pin connections are separated some distance (i) to prevent friction, (ii) to allow for bolt heads, if the members are built up, (iii) to facilitate painting.

10. Design of pin connections is primarily governed by
a) shear
b) bending
c) flexure
d) friction
Answer: c
Clarification: Large bending moments are generated since members joined by pin connections are separated some distance. So the pin diameter is generally governed by flexure.

250+ TOP MCQs on General Requirements for Plastic Design and Plastic Hinge and Answers

Design of Steel Structures MCQs on “General Requirements for Plastic Design and Plastic Hinge”.

1. Which of the following assumptions is correct for plastic design?
a) material obeys Hooke’s law before the stress reaches fy
b) yield stress and modulus of elasticity does not have same value in compression and tension
c) material is homogenous and isotropic in both elastic and plastic states.
d) material is not sufficiently ductile to permit large rotations
Answer: c
Clarification: The material obeys Hooke’s law till the stress reaches fy. The yield stress and modulus of elasticity have the same value in compression and tension. The material is homogeneous and isotropic in both elastic and plastic states. The material is assumed to be sufficiently ductile to permit large rotations of section to take place.

2. Which of the following assumptions is not correct for plastic design?
a) plastic hinge rotations are small compared with elastic deformations so all the rotations are concentrated at plastic hinges
b) segments between plastic hinges are rigid
c) influence of normal and shear forces on plastic moments is not considered
d) plane section remains plane after bending and the effect of shear is neglected
Answer: a
Clarification: The plastic hinge rotations are large compared with elastic deformations so all the rotations are concentrated at plastic hinges. The segments between plastic hinges are rigid. The influence of normal and shear forces on plastic moments is not considered. The plane section remains plane even after bending and the effect of shear is neglected.

3. Which of the following are the conditions that stress strain characteristics of steel should obey to ensure plastic moment redistribution?
a) yield plateau should be less than 6 times the yield strain
b) ratio of ultimate tensile stress to yield stress should be less than 1.2
c) steel should not exhibit strain-hardening capacity
d) elongation on standard gauge length should be more than 15%
Answer: d
Clarification: The conditions that stress strain characteristics of steel should obey to ensure plastic moment redistribution are: (i) yield plateau(horizontal portion of stress strain curve) should be greater than 6 times the yield strain, (ii) ratio of ultimate tensile stress to yield stress should be more than 1.2, (iii) elongation on standard gauge length should be more than 15%, (iv) steel should exhibit strain-hardening capacity.

4. Which of the following conditions are true for using plastic method of analysis as per IS 800?
a) members shall not be hot-rolled or fabricated using hot-plates
b) yield stress of steel should not be greater than 450MPa
c) cross section should be unsymmetrical about its axis perpendicular to axis of plastic hinge rotation
d) cross section of members not containing plastic hinges should be ‘plastic’ and those members containing plastic hinges should be ‘compact’
Answer: b
Clarification: The following are conditions for using plastic method of analysis as per IS 800: (i) yield stress of steel should not be greater than 450MPa, (ii) members shall be hot-rolled or fabricated using hot-plates, (iii) cross section should be symmetrical about its axis perpendicular to the axis of plastic hinge rotation, (iv) cross section of members not containing plastic hinges should be ‘compact’ and those members containing plastic hinges should be ‘plastic’.

5. Which of the following is true regarding plastic design methods?
a) design needs to satisfy elastic strain compatibility conditions
b) different factor of safety for all parts of the structure
c) saving of material over elastic methods resulting in lighter structures
d) design is effected by temperature changes, settlement of support, etc
Answer: c
Clarification: The following are the advantages of plastic design methods: (i) realisation of uniform and realistic factor of safety for all parts of the structure , (ii)simplified analytical procedure and rapidity of obtaining moments since no need to satisfy elastic strain compatibility conditions, (iii) no effect due to temperature changes, settlement of support, etc, (iv) saving of material over elastic methods resulting in lighter structures.

6. Which of the following is true regarding plastic design methods?
a) difficult to design for fatigue
b) more saving in column design
c) lateral bracing requirements are less stringent than for elastic design
d) moments produced by different loading conditions can be added together
Answer: a
Clarification: (i) There is little saving in column design, (ii) lateral bracing requirements are more stringent than for elastic design, (iii) difficult to design for fatigue,(iv) moments produced by different loading conditions needs to be calculated separately(cannot be added together) and the largest plastic moment is selected.

7. What is plastic hinge?
a) zone of bending due to flexure in a structural member
b) zone of yielding due to flexure in a structural member
c) zone of non-yielding due to flexure in a structural member
d) zone of yielding due to twisting in a structural member
Answer: b
Clarification: Plastic hinge is a zone of yielding due to flexure in a structural member. It is used to describe a deformation of a section when plastic bending occurs.

8. Plastic hinge behaves like a ______
a) friction mechanical hinge except that there is always a fixed moment constraint
b) frictionless mechanical hinge except that there is no fixed moment constraint
c) friction mechanical hinge except that there is no fixed moment constraint
d) frictionless mechanical hinge except that there is always a fixed moment constraint
Answer: d
Clarification: Plastic hinge behaves like a frictionless mechanical hinge except that there is always a fixed moment constraint which is equal to plastic moment capacity of the section.

9. Which of the following is true about hinged length?
a) value of moment adjacent to yield zone is more than yield moment up to hinged length of structural member
b) value of moment adjacent to yield zone is less than yield moment up to hinged length of structural member
c) value of moment adjacent to yield zone is half the yield moment up to hinged length of structural member
d) value of moment adjacent to yield zone is equal to yield moment up to hinged length of structural member
Answer: a
Clarification: The value of moment adjacent to yield zone is more than yield moment up to a certain length of structural member. This length is called hinged length.

10. Hinged length depends upon
a) weight of member
b) type of connection
c) type of loading
d) number of bolts used in connection
Answer: c
Clarification: The hinged length depends upon the type of loading and the geometry of cross section of structural member.

11. What is the hinged length for simply supported rectangular beam of span L with central concentrated load?
a) L/√2
b) 2L
c) L/2
d) L/3
Answer: d
Clarification: For simply supported rectangular beam with central concentrated load, the hinged length is equal to one-third of the span.

12. What is the hinged length for simply supported rectangular beam of span L with uniformly distributed load?
a) L/√3
b) L/√2
c) L/2
d) L/5
Answer: a
Clarification: For simply supported rectangular beam with uniformly distributed load, the hinged length is equal to span/√3.

To practice MCQs on all areas of Design of Steel Structures,

250+ TOP MCQs on Design of Compression Members – II and Answers

Design of Steel Structures Assessment Questions and Answers on “Design of Compression Members – II”.

1. The design compressive strength of member is given by
a) Aefcd
b) Ae /fcd
c) fcd
d) 0.5Aefcd
Answer: a
Clarification: The design compressive strength of member is given by Pd = Aefcd, where Ae is effective sectional area, fcd is design compressive stress.

2. The design compressive stress, fcd of column is given by
a) [fy / γm0]/ [φ – (φ22)2].
b) [fy / γm0] / [φ + (φ22)].
c) [fy / γm0]/[φ – (φ22)0.5].
d) [fy / γm0] / [φ + (φ22)0.5].
Answer: d
Clarification: The design compressive stress, fcd of column is given by fcd = [fy / γm0] / [φ + (φ22)0.5], where fy is yield stress of material, φ is dependent on imperfection factor, λ is non dimensional effective slenderness ratio.

3. What is the value of imperfection factor for buckling class a?
a) 0.34
b) 0.75
c) 0.21
d) 0.5
Answer: c
Clarification: The value of imperfection factor, α for buckling class a is 0.21. The imperfection factor considers all the relevant defects in real structure when considering buckling, geometric imperfections, eccentricity of applied loads and residual stresses.

4. If imperfection factor α = 0.49, then what is the buckling class?
a) a
b) c
c) b
d) g
Answer: b
Clarification: For buckling class c, the value of imperfection factor is 0.49. The imperfection factor takes into account all the relevant defects in real structure when considering buckling, geometric imperfections, eccentricity of applied loads and residual stresses.

5. The value of φ in the equation of design compressive strength is given by
a) φ = 0.5[1-α(λ-0.2)+λ2].
b) φ = 0.5[1-α(λ-0.2)-+λ2].
c) φ = 0.5[1+α(λ+0.2)-λ2].
d) φ = 0.5[1+α(λ-0.2)+λ2].
Answer: d
Clarification: The value of φ in the equation of design compressive strength is given by φ = 0.5[1+α(λ-0.2)+λ2], where α is imperfection factor(depends on buckling class) and λ is non-dimensional effective slenderness ratio.

6. Euler buckling stress fcc is given by
a) (π2E)/(KL/r)2
b) (π2E KL/r)2
c) (π2E)/(KL/r)
d) (π2E)/(KLr)2
Answer: a
Clarification: Euler buckling stress fcc is given by fcc = (π2E)/(KL/r)2, where E is modulus of elasticity of material and KL/r is effective slenderness ratio i.e. ratio of effective length, KL to appropriate radius of gyration, r.

7. What is the value of non dimensional slenderness ratio λ in the equation of design compressive strength?
a) (fy /fcc)
b) √(fy fcc)
c) √(fy /fcc)
d) (fy fcc)
Answer: c
Clarification: The value of non dimensional slenderness ratio λ in the equation of design compressive strength is given by λ = √(fy /fcc) , where fy is yield stress of material and fcc = (π2E)/(KL/r)2, where E is modulus of elasticity of material and KL/r is effective slenderness ratio i.e. ratio of effective length.

8. The design compressive strength in terms of stress reduction factor is given by
a) Xfy
b) Xfy / γm0
c) X /fy γm0
d) Xfy γm0
Answer: b
Clarification: The design compressive strength in terms of stress reduction factor is given by fcd = Xfy / γm0 , where X = stress reduction factor for different buckling class, slenderness ratio and yield stress = 1/ [φ + (φ22)0.5], fy is yield stress of material and γm0 is partial safety factor for material strength.

9. The value of design compressive strength is limited to
a) fy + γm0
b) fy
c) fy γm0
d) fy / γm0
Answer: d
Clarification: The value of design compressive strength is given by fcd = [fy / γm0] / [φ + (φ22)0.5] ≤ fy / γm0 i.e. fcd should be less than or equal to fy / γm0.

10. The compressive strength for ISMB 400 used as a column for length 5m with both ends hinged is
a) 275 kN
b) 375.4 kN
c) 453 kN
d) 382 kN
Answer: b
Clarification: K = 1 for both ends hinged, KL = 1×5000 = 5000, r = 28.2mm (from steel table), Ae = 7846 mm2(from steel table)
KL/r = 5000/28.2 = 177.3
h/bf = 400/140 = 2.82, t = 16mm Therefore, buckling class = b
From table in IS code, fcd = 47.85MPa
Pd = Ae fcd = 7846 x 47.85 = 375.43 kN.

Design of Steel Structures Assessment Questions,

250+ TOP MCQs on Purlins and Answers

Design of Steel Structures Multiple Choice Questions on “Purlins”.

1. What are purlins?
a) beams provided in foundation
b) beams provided above openings
c) beams provided over trusses to support roofing
d) beams provided on plinth level
Answer: c
Clarification: Purlins are beams provided over trusses to support sloping roof system between adjacent trusses. Channels, angle sections, and old formed Z-sections are widely used as purlins.

2. Theoretically, purlins are generally placed at
a) only at panel points
b) only at edges
c) only at mid span
d) only at corners of roof
Answer: a
Clarification: Theoretically, it is desirable to place purlins only at panel points. They are placed at panel points to avoid bending in the top chords of roof trusses. For large trusses, it is more economical to space purlins at closer intervals.

3. Purlin section is subjected to
a) not subjected to bending or twisting
b) twisting only
c) symmetrical bending
d) unsymmetrical bending
Answer: d
Clarification: The wind force is assumed to act normal to roof truss and gravity load pass through centre of gravity of purlin section. Hence, the purlin section is subjected to twisting in addition to bending. Such bending is called unsymmetrical bending.

4. If purlins are assumed to be simply supported, the moments will be
a) wl2/10
b) wl/8
c) wl/10
d) wl2/8
Answer: d
Clarification: Purlins can be designed simple, continuous or cantilever beams. If purlins are assumed to be simply supported, the moments will be wl2/8. If they are assumed to be continuous, the moments will be slightly less and taken as wl2/10. IS 800 recommends the purlins to be designed as continuous beams.

5. While erecting channel section purlins, it is desirable that they are erected over rafter with their flange
a) facing down slope
b) facing up slope
c) does not depend whether up slope or down slope
d) flanges are placed randomly
Answer: b
Clarification: While erecting angle, channel or I- section purlins, it is desirable that they are erected over rafter with their flange facing up slope. In this position, the twisting moment does not cause any instability. The twisting moment will cause instability if the purlins are kept in such a way that the flanges face the downward slope.

6. Sag rods are provided at
a) one-third points between roof trusses
b) end of span
c) two-third points between roof trusses
d) are never provided
Answer: a
Clarification: Purlin sections have tendency to sag in the direction of sloping roof . So, sag rods are provided midway or at one-third points between roof trusses to take up the sag.

7. Which of the following is not true about sag rods?
a) sag rods are provided at midway or at one-third points between roof trusses
b) these rods reduce the moment Myy
c) these rods increase the moment Myy
d) these rods result in smaller purlin sections
Answer: c
Clarification: Sag rods are provided midway or at one-third points between roof trusses to take up the sag in the direction of sloping roof by purlins. These rods provide lateral support with resprct to y-axis bending. Consequently, moment Myy is reduced and thereby result in smaller purlin section. they are useful in keeping the purlins in proper alignment during erection until roofing is installed and connected to purlins.

8. When one sag rod is used, the moment about web axis
a) reduces by 50%
b) increases by 50%
c) increases by 75%
d) reduces by 75%
Answer: d
Clarification: If sag rods are not used, the maximum moment about web axis would be wl2/8. When one sag rod is used, the moments are reduced by 75% and when two sag rods are used at one-third points, the moments are reduced by 91%.

9. The maximum bending moment for design of channel/I-section purlin is calculated by
a) Wl/10, where W= concentrated load
b) Wl/8, where W= concentrated load
c) W/10, where W= concentrated load
d) W/8, where W= concentrated load
Answer: a
Clarification: The gravity load, P1 and load due to wind component, H1 are computed. The loads are multiplied by load factors. Thus, P = γfP1, H = γfH1 . The maximum bending moment are calculated as Mz = Pl/10 and My = Hl/10, where P= factored load along z-axis, H = factored load along y-axis, l= span of purlin (c/c distance between adjacent trusses).

10. The required section modulus of the channel/I-section purlin can be determined by
a) Zpz = Myγm0/fy + (b/d)(Mzγm0/fy)
b) Zpz = Mzγm0/fy + (b/d)(Myγm0/fy)
c) Zpz = Mzγm0/fy + 2.5(b/d)(Myγm0/fy)
d) Zpz = Myγm0/fy + 2.5(b/d)(Mzγm0/fy)
Answer: c
Clarification: The required section modulus of the purlin section can be determined by Zpz = Mzγm0/fy + 2.5(b/d)(Myγm0/fy ), where γm0 is partial safety factor for material = 1.1, d is depth of trial section, b is the breadth of the trial section, Mz and My are factored bending moments about Z and Y axes, respectively, and fy is yield stress of steel. Since the above equation involves b and d of a section, trial section must be used and from the above equation , it is checked whether chosen section is adequate or not.

11. The design capacity of channel/I-section purlin is given by
a) M = Zp/fy
b) M = Zpγm0fy
c) M = Zpγm0/fy
d) M = γm0/fy
Answer: b
Clarification: The design capacity of channel/I-section purlin is given by Mdz = Zpzγm0/fy and Mdy = Zpm0/fy , Mdz and Mdy are design moment capacity about Z and Y axes, respectively, Zpz and Zpy are plastic section modulus about Z and Y axes, respectively and fy is yield stress of steel. For safety, design moment capacity should be always greater than or equal to factored bending moments.

12. The check for design capacity of channel/I-section purlin is given by
a) Mdz ≤ 1.2Zeyfym0, Mdy ≤ 2.4Zezfym0
b) Mdz ≤ Zezfym0, Mdy ≤ 1.2Zeyfym0
c) Mdz ≤ γfZeyfym0, Mdy ≤ 1.2Zezfym0
d) Mdz ≤ 1.2Zezfym0, Mdy ≤ γfZeyfym0
Answer: d
Clarification: The check for design capacity of channel/I-section purlin is given by Mdz ≤ 1.2Zezfym0 , Mdy ≤ γyZeyfym0 , where Mdz and Mdy are design moment capacity about Z and Y axes, respectively, Zez and Zey are elastic section modulus about Z and Y axes, respectively and fy is yield stress of steel. Since in y-direction, the shape factor Zp/Ze will be greater than 1.2, γf is used instead of 1.2. If 1.2 is used the onset of yielding under unfactored loads cannot be prevented.

13. Which of the following relation is correct for design of channel/I-section purlin?
a) (Mz/Mdz) + (My/Mdy) ≥ 1
b) (Mz/Mdz) + (My/Mdy) ≤ 1
c) (Mdz/Mz) + (My/Mdy) ≤ 1
d) (Mdz/Mz) + (Mdy/My) ≥ 1
Answer: b
Clarification: The local capacity of the section is checked by interaction equation. It is given by (Mz/Mdz) + (My/Mdy) ≤ 1 , where Mdz and Mdy are design moment capacity about Z and Y axes, respectively, and Mz and My are factored bending moments about Z and Y axes, respectively.

14. For which of the following slope of roof truss, angle section purlin can be used?
a) 25˚
b) 50˚
c) 75˚
d) 60˚
Answer: a
Clarification: Angle sections are unsymmetrical about both the axes. Angle sections can be used as purlin section. provided slope of the roof truss is less than 30˚.

15. The modulus of section required for angle section purlin is given by
a) Z = M/(0.66xfy)
b) Z = M/(1.33×0.66xfy)
c) Z = M/(1.33×0.66xfy)
d) Z = M/(1.33xfy)
Answer: c
Clarification: The modulus of section required for angle section purlin is given by Z = M/(1.33×0.66xfy), M = maximum bending moment = wl2/10, w = unfactored uniformly distributed load, l = span of purlin, fy is yield stress. The gravity and wind loads are determined to calculate bending moment and both loads are assumed to be normal to roof truss.

250+ TOP MCQs on Simple Connections and Answers

Design of Steel Structures Multiple Choice Questions on “Simple Connections”.

1. Simple connections are used to transmit ______
a) forces
b) moments
c) stresses
d) both force and moment
Answer: a
Clarification: Simple Connection is required to transmit force only and there may not be any moment acting on the group of connectors. This connection may be capable of transmitting some amount of moment. Simple connections are also called flexible connections.

2. Which of the following statement is true?
a) lap joint eliminates eccentricity of applied load, butt joint results in eccentricity at connection
b) lap joint and butt joint eliminates eccentricity at connection
c) lap joint results in eccentricity of applied load, butt joint eliminates eccentricity at connection
d) lap joint and butt joint results in eccentricity of applied load
Answer: c
Clarification: Lap joints and butt joints are used to connect plates or members composed of plate elements. Lap joint results in eccentricity of applied load, butt joint eliminates eccentricity at connection.

3. In a lap joint, at least __________ bolts should be provided in a line.
a) 0
b) 1
c) 2
d) 3
Answer: c
Clarification: In lap joint, members to be connected are simply overlapped and connected together by means of bolts and welds. To minimize the effect of bending due to eccentricity in a lap joint, at least two bolts in a line should be provided.

4. Use of lap joints is not recommended because
a) stresses are distributed unevenly
b) eccentricity is eliminated
c) bolts are in double shear
d) no bending is produced
Answer: a
Clarification: In lap joint the centre of gravity of load in one member does not coincide with centre of gravity of load in other member. It results in eccentricity of applied loads and bending. Due to eccentricity, stresses are also not evenly distributed, Hence lap joint is not recommended.

5. Why is double cover butt joint preferred over single cover butt joint or lap joint?
a) bolts are in single shear
b) eliminates eccentricity
c) bending in bolts
d) shear force is not transmitted
Answer: b
Clarification: Double cover butt joint preferred over single cover butt joint or lap joint because (i) eccentricity of load is eliminated, hence no bending in bolts, (ii) total shear force to be transmitted is split into two parts, hence bolts are in double shear. Shear capacity of double cover butt joint is double the shear capacity of single cover butt joint or lap joint.

6. Clip and seating angle connection is provided for
a) lateral support
b) bending support
c) frictional support
d) hinged support
Answer: a
Clarification: Clip and seating angle connection transfer reaction from beam to column through angle seat. The cleat angle is provided for lateral or torsional support to the top flange of the beam and bolted to the top flange.

7. In flexible end plate design, beam is designed for the
a) maximum bending moment
b) shear force
c) torsional moment
d) zero end moment
Answer: d
Clarification: In flexible end plate design. beam is designed for the zero end moment and the end plates augment the web shear and bending capacity of beams.

8. which of the following condition is true for web side plate connection?
a) HSFG bolts should be used
b) Bolts should be designed to fail by shear of bolt
c) Bolts should be designed to fail by bearing of connected plies
d) Edge distances must be less than two times the bolt diameter
Answer: c
Clarification: The following condition must be considered for web side plate connection (i) only ordinary bolts should be used, (ii) bolts should be designed to fail by bearing of connected plies ad not by shear of bolt, (iii) edge distances must be greater than two times the bolt diameter.

250+ TOP MCQs on Plastic-Collapse Load and Answers

Design of Steel Structures Multiple Choice Questions on “Plastic-Collapse Load”.

1. What is plastic-collapse load?
a) load at which sufficient number of elastic hinges are formed
b) load at which sufficient number of plastic hinges are not formed
c) load at which sufficient number of plastic hinges are formed
d) load at which structure fails
Answer: c
Clarification: The load at which sufficient number of plastic hinges are formed in a structure such that a collapse mechanism is created is called plastic-collapse load or plastic-limit load.

2. What is difference between plastic design and elastic design?
a) In plastic design, redistribution of bending moment is considered
b) In plastic design, redistribution of bending moment is not considered
c) In elastic design, redistribution of bending moment is considered
d) Both in plastic and elastic design, redistribution of bending moment is considered
Answer: a
Clarification: The difference between plastic design and elastic design is that plastic design takes into account the favourable redistribution of bending moment which takes place in indeterminate structure after first hinge forms at the point of maximum bending moment.

3. Which of the following is true in a fixed beam having concentrated load at one-third point?
a) first hinge is formed at centre of beam
b) after first hinge, moment at that point increases
c) after first hinge, moment at that point decreases
d) after first hinge, moment at that hinge remains constant
Answer: d
Clarification: In a fixed beam having concentrated load at one-third point, first hinge forms at one of the end supports. As load is increased further, moment at this hinge remains constant at Mp, while the moments at the other support and load point increase until second hinge is formed. When load is further increased, the moment at these two hinges remain constant at Mp, until third and final hinge is formed to make the beam a mechanism. The final ultimate load will be 33% higher than first hinge load.

4. In a fixed beam having concentrated load at one-third point, final ultimate load will be ____ than first hinge load.
a) 33% lower
b) 33% higher
c) 50% higher
d) 50% lower
Answer: b
Clarification: In a fixed beam having concentrated load at one-third point, final ultimate load will be 33% higher than first hinge load.

5. Which of the following statement is correct?
a) plastic limit load is obtained by multiplying working load with load factor
b) plastic limit load is obtained by dividing working load with load factor
c) working load is obtained by multiplying plastic limit load with load factor
d) working load is obtained by multiplying working load with load factor
Answer: a
Clarification: Plastic limit load is obtained by multiplying working load with load factor. Depending on combination of loads and their probability of acting at same time, different load factors are used.

6. Cantilevers and over hanging beams collapse as _____
a) single-bar mechanism
b) double-bar mechanism
c) three-bar mechanism
d) does not collapse
Answer: a
Clarification: Cantilevers and over hanging beams generally collapse as single-bar mechanisms with a single plastic hinge at one of the supports.

7. Single-span beams collapse as ________
a) single-bar mechanism
b) two-bar mechanism
c) three-bar mechanism
d) does not collapse
Answer: b
Clarification: Single-span beams generally collapse as two-bar mechanisms with a hinge at each support and plastic hinge within the span.

8. Multi-span beams collapse in one span as ___________
a) does not collapse
b) single-bar mechanism
c) two-bar mechanism
d) three-bar mechanism
Answer: c
Clarification: Multi-span beams generally collapse in one span as a local two-bar mechanism, within the span and a hinge at each support. It is possible to have a three-bar mechanism, where two adjacent spans combine to form a mechanism.

9. Among which of the following is the location of plastic hinge?
a) at supports
b) at centre of beam
c) at points away from concentrated load
d) at centre for uniformly distributed load
Answer: a
Clarification: Plastic hinges normally occur at supports, points of concentrated load, and points where cross section change. The location of plastic hinge in a beam with uniformly distributed load is not well defined.