Differential and Integral Calculus Multiple Choice Questions on “Taylor’s Theorem Two Variables”.
1. Among the following which is the correct expression for Taylor’s theorem in two variables for the function f (x, y) near (a, b) where h=x-a & k=y-b upto second degree?
a) (f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{4!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
b) (f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+ frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
c) (f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+ frac{(y-b)^2}{2!} f_{yy}(a, b))
d) (f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
Answer: d
Explanation: By definition
(f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
here we can observe that second degree is of the form (p+q)2 similarly Taylor’s theorem is expanded to third degree which is of the form (p+q)3 & f (a+ h, b+ k) = f (x, y)
where((f_x=frac{∂f (x,y)}{∂x}, f_y=frac{∂f (x,y)}{∂y}, f_{xx}=frac{∂}{∂x}(frac{∂f(x,y)}{∂x}), f_{yy}=frac{∂}{∂y} (frac{∂f (x,y)}{∂y}), \
f_{xy}=frac{∂}{∂x}(frac{∂f (x,y)}{∂y})).)
2. Given f (x,y)=ex cosy, what is the value of the fifth term in Taylor’s series near (1,(frac{π}{4})) where it is expanded in increasing order of degree & by following algebraic identity rule?
a) (frac{-e(x-1)(y-frac{π}{4})}{sqrt{2}})
b) (-sqrt{2} e(x-1)(y-frac{π}{4}))
c) (frac{e(x-1)^2}{sqrt{2}})
d) (frac{e(y-frac{π}{4})^2}{sqrt{2}})
Answer: a
Explanation: Taylor’s series expansion is given by
(f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
Thus fifth term is given by (2 frac{(x-a)(x-b)}{2!} f_{xy} (a,b))..(1) where a=1, b=π/4 & (f_{xy}=frac{∂}{∂x}(frac{∂f(x,y)}{∂x}) = frac{∂}{∂x}(frac{∂e^x cosy}{∂y}) =- e^x ,siny ) at (1, (frac{π}{4}), f_{xy}=frac{-e}{sqrt{2}}) substituting in (1)
We get fifth term as (2 frac{(x-1)(x-π/4)}{2!} frac{-e}{sqrt{2}} = frac{-e(x-1)(y-frac{π}{4})}{sqrt{2}}).
3. Given f (x,y)=sinxy, what is the value of the third degree first term in Taylor’s series near (1,-(frac{π}{2})) where it is expanded in increasing order of degree & by following algebraic identity rule?
a) (frac{π^3}{8})
b) (frac{π^3}{8} frac{(x-1)(y+frac{π}{2})}{3!})
c) 0
d) (-frac{π^3}{8} frac{(x-1)^3}{3!})
Answer: c
Explanation: Third degree first term in Taylor’s series is given by (frac{(x-a)^3 f_{xxx} (x,y)}{3!}) Where a=1 (b=-frac{π}{2}, f_{xxx} (x,y)=frac{∂^3 f(x,y)}{∂x^3} ,i.e, frac{∂^3 sinxy}{∂x^3} = -y^3 cosxy)…… (partial differentiating f (x,y) w.r.t x only)
at (a=1, b=-frac{π}{2}, frac{∂^3 sinxy}{∂x^3} = -frac{π^3 cos-frac{π}{2}}{8}=0) hence third degree first term is given by (-frac{π^3}{8} frac{(x-1)^3}{3!}.0 = 0.)
4. Taylor’s theorem is mainly used in expressing the function as sum with infinite terms.
a) True
b) False
Answer: a
Explanation: Taylor’s theorem helps in expanding a function into infinite terms however, it can be applied to functions that can be expressed finitely.
5. Expansion of (f (x,y) = tan^{-1} frac{y}{x}) upto first degree containing (x+1) & (y-1) is __________
a) (frac{3π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{-1}{2} + frac{(y-1)^2}{2!} frac{1}{2})
b) (frac{π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{1}{4} + frac{(y-1)^2}{2!} frac{1}{4})
c) (frac{5π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{-1}{4} + frac{(y-1)^2}{2!} frac{1}{4})
d) (frac{3π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{-1}{4} + frac{(y-1)^2}{2!} frac{1}{4})
Answer: a
Explanation: We can expand the given function according to Taylor’s theorem
(f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
Given a=-1 & b=1, f(-1,1)=tan-1-1 = (frac{3π}{4})
(f_x = frac{-y}{x^2+y^2} ,at, (-1,1) = frac{-1}{2})
(f_y = frac{x}{x^2+y^2} ,at, (-1,1) = frac{-1}{2})
(f_{xy} = frac{(x^2+y^2)-2x^2}{(x^2+y^2)^2}) at (-1,1)=0
(f_{xx} = frac{2yx}{(x^2+y^2)^2} ,at, (-1,1)=frac{-2}{4} = frac{-1}{2})
(f_{yy} = frac{-2yx}{(x^2+y^2)^2} ,at, (-1,1)=frac{2}{4} = frac{1}{2}) thus the series is given by
(frac{3π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{-1}{2} + frac{(y-1)^2}{2!} frac{1}{2}).
Global Education & Learning Series – Differential and Integral Calculus.
To practice all areas of Differential and Integral Calculus,