Engineering Mathematics MCQs focuses on “Indeterminate Forms – 3”.
1. What are Intermediate Forms?
a) Forms(f(x)/g(x)) whose limits x tends to ‘a’ can give rational number directly
b) Forms(f(x)/g(x)) whose limits x tends to ‘a’ can give finite number directly
c) Forms(f(x)/g(x)) whose limits x tends to ‘a’ can not be infinite output or cannot be solved directly
d) Forms(f(x)/g(x)) whose limits x tends to ‘a’ can gives finite output
Answer: c
Explanation:
(lim_{xrightarrow a})= 0⁄0 = 0⁄∞ = ∞⁄0 = ∞⁄∞ are all intermediate forms.
Special Rules are made to solve these forms. They cannot be solved directly.
2. L’Hospital Rule states that
a) If (lim_{xrightarrow a}frac{f(x)}{g(x)}) is an indeterminate form than (lim_{xrightarrow a}frac{f(x)}{g(x)}=lim_{xrightarrow a}frac{f'(x)}{g'(x)}) if (lim_{xrightarrow a} frac{f'(x)}{g'(x)}) has a finite value
b) (lim_{xrightarrow a}frac{f(x)}{g(x)}) always equals to (lim_{xrightarrow a}frac{f'(x)}{g'(x)})
c) (lim_{xrightarrow a}frac{f(x)}{g(x)}) if an indeterminate form than cannot be solved
d) (lim_{xrightarrow a}frac{f(x)}{g(x)}) if an indeterminate form than it is equals to zero.
Answer: a
Explanation: According to L’Hospital Rule, if (lim_{xrightarrow a}frac{f(x)}{g(x)}) is indeterminate and (lim_{xrightarrow a}frac{f'(x)}{g'(x)}) has a finite value then (lim_{xrightarrow a}frac{f(x)}{g(x)} = lim_{xrightarrow a}frac{f'(x)}{g'(x)}). It is helpful in solving limits of indeterminate forms.
3. If f(x) = x2 – 3x + 2 and g(x) = x3 – x2 + x – 1 than find value of (lim_{xrightarrow 1}frac{f(x)}{g(x)})?
a) 0.5
b) 1
c) -.5
d) -1
Answer: c
Explanation:
(lim_{xrightarrow 1}frac{f(x)}{g(x)}=lim_{xrightarrow 1}frac{x^2-3x+2}{x^3-x^2+x-1})=(1-3+2)/(1-1+1-1)=0/0
Hence this gives indeterminent forms hence by L’Hospital Rule
(lim_{xrightarrow 1}frac{f(x)}{g(x)}=lim_{xrightarrow 1}frac{f'(x)}{g'(x)}=lim_{xrightarrow 1}frac{2x-3}{3x^2-2x+1}=frac{2-3}{3-2+1}=-frac{1}{2})
Hence
(lim_{xrightarrow 1}frac{f(x)}{g(x)}=-frac{1}{2})
4. If f(x) = Tan(x)-1 and g(x) = Sin(x) – Cos(x) than find value of limx → π⁄4f(x)⁄g(x)
a) -√2
b) √(-2)
c) √2
d) √3
Answer: c
Explanation:
(lim_{xrightarrow pi/4}frac{f(x)}{g(x)}=lim_{xrightarrow pi/4}frac{tan(x)-1}{sin(x)-cos(x)}=frac{(1-1)}{frac{1}{sqrt{2}}-frac{1}{sqrt{2}}}=0/0)
Hence this gives indeterminate forms hence by L’Hospital Rule
(lim_{xrightarrow pi/4}frac{f(x)}{g(x)}=lim_{xrightarrow pi/4}frac{f'(x)}{g'(x)}=lim_{xrightarrow pi/4}frac{sec^2}{cos(x)+sin(x)}=sqrt{2})
Hence
(lim_{xrightarrow pi/4}frac{f(x)}{g(x)}=sqrt{2})
5. If f(x) = Tan(x) and g(x) = ex – 1 than find value of limx → 0f(x)⁄g(x)
a) 1
b) 0
c) -1
d) 2
Answer: a
Explanation:
(lim_{xrightarrow 0}frac{f(x)}{g(x)}=lim_{xrightarrow 0}frac{tan(x)}{e^x-1}=0/0) (Indeterminate Form)
By L’Hospital’s rule
(lim_{xrightarrow 0}frac{f(x)}{g(x)}=lim_{xrightarrow 0}frac{f'(x)}{g'(x)}=lim_{xrightarrow 0}frac{sec^2(x)}{e^x})=1
6. Find the value of (lim_{xrightarrow infty}(1+frac{1}{x})^x)
a) e-1
b) e
c) e + 1
d) 1
Answer: b
Explanation:
(lim_{xrightarrow infty}(1+frac{1}{x})^x)=1∞ (Indeterminate form)
Hence
Let t=1/x
->y=(lim_{xrightarrowinfty}(1+frac{1}{x})^x=lim_{trightarrow 0}(1+t)^{1/t})
Taking log on both side,
ln(y) = (lim_{trightarrow 0} frac{ln(1+t)}{t}) = 0/0 (Indeterminate form)
Applying L’Hospital Rule again
ln(y) = (lim_{trightarrow 0} frac{1}{1+t}) = 1
=> y = (lim_{xrightarrowinfty}(1+frac{1}{x})^x) = e
7. If f(x) = x3 + 3x2 + Sin(x) and g(x) = ex – 1 than find value of (lim_{xrightarrow 0}f(x)^{frac{1}{g(x)}})
a) e6e
b) e(e/6)
c) e6
d) e(6/e)
Answer: c
Explanation:
y=(lim_{xrightarrow 0}f(x)^{(frac{1}{g(x)})} = lim_{xrightarrow 0}[x^3+3x^2+sin(x)]^{frac{1}{e^x-1}})
Taking ln on both side
ln(y)=(lim_{xrightarrow 0}frac{ln(x^3+3x^2+sin(x))}{e^x-1})=ln(0)/0 (Indeterminate Form)
By L’Hospital Rule
(lim_{xrightarrow 0}frac{3x^+6x+cos(x)}{e^x(x^3+3x^2+sin(x))}=1/0)
Again using L’Hospital rule
ln(y)=(lim_{xrightarrow 0}frac{6x+6+sin(x)}{e^x(x^3+3x^2+sin(x))+e^x(3x^2+6x+cos(x))}=6)
y=e6
8. If f(x) = Sin(x) and g(x) = x than find value of limx → 0f(x)⁄g(x)
a) -1
b) 0
c) 1
d) 2
Answer: c
Explanation: limx → 0f(x)⁄g(x) = limx → 0sin(x)⁄x = 0⁄0 (Indeterminate forms)
By L’Hospital rule
limx → 0cos(x)⁄1 = 1.
9. If f(x) = sin(x)cos(x) and g(x) = x2 than find value of limx → 0f(x)⁄g(x)
a) 2
b) 0
c) -1
d) Cannot be found
Answer: b
Explanation:
(lim_{xrightarrow 0}frac{f(x)}{g(x)}=lim_{xrightarrow 0}frac{sin(x)cos(x)}{x^2}) = 0/0
Henece, by L’Hospital rule
(lim_{xrightarrow 0}frac{f(x)}{g(x)}=lim_{xrightarrow 0}frac{cos(2x)}{2x}=frac{1}{0})
Again by L’Hospital rule
(lim_{xrightarrow 0}frac{f(x)}{g(x)}=lim_{xrightarrow 0}frac{sin(2x)}{1}=0)
10. If f(x) = ex + xcos(x) and g(x) = Sin(x) than find value of limx → 0f(x)⁄g(x)
a) 2
b) 1
c) 3
d) 4
Answer: a
Explanation:
(lim_{xrightarrow 0}frac{f(x)}{g(x)}=lim_{xrightarrow 0}frac{e^x+xcos(x)}{sin(x)}=lim_{xrightarrow 0}frac{e^x}{sin(x)}+lim_{xrightarrow 0}frac{xcos(x)}{sin(x)})=1/0+0/0, i.e both are indeterminate
i.e., applying L’Hospital Rule
(lim_{xrightarrow 0}frac{e^x}{sin(x)}=lim_{xrightarrow 0}frac{e^x}{cos(x)}+lim_{xrightarrow 0}frac{cos(x)-xsin(x)}{cos(x)})=1+1=2
11. Find the value of (lim_{xrightarrow 0}frac{xsin(x-1)}{(x-1)e^x}) is, where {x} is the fractional part of x.
a) 2⁄e
b) 1⁄e
c) 0
d) –1⁄e
Answer: b
Explanation:
(lim_{{x}rightarrow 1^+}frac{{x}sin(x-1)}{(x-1)e^x})
(=lim_{xrightarrow 1^+}{x}lim_{xrightarrow 1^+}{frac{sin(x-1)}{x-1}} lim_{xrightarrow 1^+}frac{1}{e^x}=lim_{xrightarrow 1^+}{x}1.frac{1}{e}=frac{1}{e})
because, (lim_{xrightarrow 1^+}{x}=1).
To practice MCQs on all areas of Engineering Mathematics,