Microwave Engineering Multiple Choice Questions on “Quarter Wave Transformer”.
1. If a transmission line of characteristic impedance 50 Ω is to be matched to a load of 100Ω, then the characteristic impedance of the ƛ/4 transmission line to be used is:
A. 70.71 Ω
B. 50 Ω
C. 100 Ω
D. 75 Ω
Answer: A
Clarification: When a transmission line is not terminated with a matched load, it leads to losses and reflections. In order to avoid this, a λ/4 transmission line can be used for matching purpose. The characteristic impedance of the λ/4 transmission line is given by Z1=√(ZₒR)L. substituting the given values, we get Z1=70.71 Ω.
2. If a λ/4 transmission line is 100Ω is used to match a transmission line to a load of 100Ω, then the characteristic impedance of the transmission line is:
A. 100 Ω
B. 50 Ω
C. 70.71 Ω
D. 200 Ω
Answer: A
Clarification: When a transmission line is not terminated with a matched load, it leads to losses and reflections. In order to avoid this, a λ/4 transmission line can be used for matching purpose. The characteristic impedance of the λ/4 transmission line is given by Z1=√(ZₒR)L. substituting the given values,
Z0=100 Ω.
3. Expression for the characteristic impedance of a transmission line(λ/4) used for impedance matching is:
A. Z1=√(ZₒR)L
B. Z1=√(Zₒ/R)L
C. Z1=√(Zₒ+R)L
D. None of the mentioned
Answer: A
Clarification: When a transmission line is not terminated with a matched load, it leads to losses and reflections. In order to avoid this, a λ/4 transmission line can be used for matching purpose. Hence the expression used to find the characteristic impedance of the λ/4 transmission line is Z1=√(ZₒR)L.
4. If there is no standing wave on a transmission line, then the value of SWR is:
A. 1
B. 0
C. Infinity
D. Insufficient data
Answer: A
Clarification: When there are no standing waves in the transmission line, the reflection co-efficient is zero and hence input impedance of the transmission line is equal to the characteristic impedance of the line. Hence the relation between SWR and reflection co-efficient yields SWR as 1.
5. When a λ/4 transmission line is used for impedance matching, then which of the following is valid?
A. Standing waves are present on the λ/4 transmission line
B. No standing waves on the λ/4 transmission line
C. Standing waves are not present both on the feed line and the matching λ/4 line
D. Standing waves are present on both the feed line and the matching λ/4 line
Answer: A
Clarification: λ/4 transmission line is used to match the load impedance to the characteristic impedance of the transmission line. Hence, standing waves are present on the λ/4 transmission line, but not on the transmission line since it is matched
6. For a transmission line , if the input impedance of the transmission line is 100Ω with a characteristic impedance of 150Ω, then the magnitude of the reflection co efficient:
A. 0.5
B. 1
C. 0.2
D. 0
Answer: C
Clarification: The expression for reflection co-efficient of a transmission line in terms input and characteristic impedance is (Zin-Zₒ)/(Zin+ Zₒ). Substituting the given values in the above expression, reflection co-efficient is 0.2.
7. If the reflection co-efficient of a transmission line is 0.334 with a characteristic impedance of 50Ω then the input impedance of the transmission line is:
A. 100 Ω
B. 50 Ω
C. 150 Ω
D. None of the mentioned
Answer: A
Clarification: Substituting the given voltage reflection co-efficient and the characteristic impedance of the transmission line in ┌= (Zin-Zₒ)/(Zin+ Zₒ). The input impedance of the transmission line is 100Ω
8. When a transmission line of characteristic impedance(50Ω) zₒ is matched to a load by a λ/4 transmission line of characteristic impedance 100Ω, then the transmission co efficient is:
A. 1.5
B. 0.5
C. 1.333
D. 2
Answer: C
Clarification: When a transmission line is matched to a load by using a λ/4 transmission line, the transmission co-efficient T1 of the line is obtained using the expression 2Z1/ (Z1+Z0). Here Z1 is the characteristic impedance of the λ/4 transmission line and Z1 is the characteristic impedance of the transmission line. Substituting the given values, we get T1=1.3333.
9. If a transmission line of zₒ=50Ω is matched using λ/4 transmission line of z₁=100Ω, then the transmission co efficient T₂ is:
A. 1
B. 0.6667
C. 1.3333
D. 2
Answer: B
Clarification: When a transmission line is matched to a load by using a λ/4 transmission line, the transmission co-efficient T2 of the line is obtained using the expression 2Z0/ (Z1+Z0). Here Z1 is the characteristic impedance of the λ/4 transmission line and Z0 is the characteristic impedance of the transmission line. Substituting the given values, we get T2=0.6667.
10. If the transmission co-efficient T₁ of a transmission line is 1.333 and the characteristic impedance of the λ/4 transmission line used is 100Ω, then the characteristic impedance of the transmission line is:
A. 50Ω
B. 100Ω
C. 70.71Ω
D. None of the mentioned
Answer: A
Clarification: Expression for transmission co-efficient of a transmission line matched using a λ/4 transmission line is 2Z1/ (Z1+Z0). Substituting the known values, the characteristic impedance of the transmission line is 50Ω.
Microwave Engineering,