Network Theory Multiple Choice Questions on “Advanced Problems Involving Parameters”.
1. For the circuit given below, the value of Transmission parameter A and C are ____________
A. A = -0.7692 + j0.3461 Ω, C = 0.03461 + j0.023 Ω
B. A = 0.7692 + j0.3461 Ω, C = 0.03461 + j0.023 Ω
C. A = -0.7692 – j0.3461 Ω, C = -0.03461 + j0.023 Ω
D. A = 0.7692 – j0.3461 Ω, C = 0.023 + j0.03461 Ω
Answer: B
Clarification: V = [20 + (-j10) || (j15 − j20)] I1
V1 = (Big[20 + frac{(-j10)(-j5)}{-j15}Big]) I1
= [20 – j(frac{10}{3})] I1
I0 = (left(frac{-j10}{-j10-j5}right)) I1 = (frac{2}{3})I1
V2 = (-j20) I0 + 20I’0
= –(frac{j40}{3}I_1 + 20I_1 = (20 – frac{j40}{3}) I_1 )
∴ A = (frac{V_1}{V_2} = frac{(20-frac{j10}{3})I_1}{20-frac{j40}{3}) I_1}) = 0.7692 + j0.3461 Ω
∴ C = (frac{I_1}{V_2} = frac{1}{20-j40/3}) = 0.03461 + j0.023 Ω.
2. For the circuit given below, the value of the Transmission parameter B and D are __________
A. D = 0.5385 + j0.6923 Ω, B = -6.923 + j25.385 Ω
B. D = 0.6923 + j0.5385 Ω, B = 6.923 + j25.385 Ω
C. D = -0.6923 + j0.5385 Ω, B= 25.385 + j6.923 Ω
D. D = -0.5385 + j0.6923 Ω, B = -6.923 + j25.385 Ω
Answer: A
Clarification: Z1 = (frac{(-j15)(-j10)}{-j15-j10-j20}) = j10
Z2 = (frac{(-j10)(-j20)}{-j15}) = (-frac{j40}{3})
Z3 = (frac{(j15)(-j20)}{-j15}) = j20
-I2 = (frac{20-j40/3}{20-frac{j40}{3}+j20}I_1 = frac{3-j2}{3+j}) I1
∴ D = (frac{-I_1}{I_2} = frac{3+j}{3-j2}) = 0.5385 + j0.6923 Ω
V1 = [j10 + 2(9+j7)] I1
= jI1 (24 – j18)
So, B = –(frac{V_1}{I_2} = frac{-jI_1 (24-j18)}{-frac{3-j2}{3+j} I_1})
= (frac{6}{13})(-15+j55)
∴ B = -6.923 + j25.385 Ω.
3. For the circuit given below, the value of the Transmission parameters A and C are _________________
A. A = 0, C = 1
B. A = 1, C = 0
C. A = Z, C = 1
D. A = 1, C = Z
Answer: B
Clarification: V1 = V2
Or, A = (frac{V_1}{I_2}) = 1
I1 = 0 or, C = (frac{I_1}{V_2}) = 0.
4. For the circuit given below, the value of the Transmission parameters B and D are _________________
A. B = Z, D = 1
B. B = 1, D = Z
C. B = Z, D = Z
D. B = 1, D = 1
Answer: A
Clarification: V1 = ZI1
And I2 = -I1
B = (frac{V_1}{I_2})
= (frac{-ZI_1}{-I_1}) = Z
D = (frac{-I_1}{I_2}) = 1.
5. For the circuit given below, the value of the Transmission parameters A and C are _______________
A. A = 1, C = 0
B. A = 0, C = 1
C. A = Y, C = 1
D. A = 1, C = Y
Answer: D
Clarification: V1 = V2
∴ A = (frac{V_1}{V_2}) = 1
And V1 = ZI1
∴ C = (frac{I_1}{V_2} = frac{1}{Z}) = Y.
6. For the circuit given below, the value of the Transmission parameters B and D are ________________
A. B = Y, D = 1
B. B = 1, D = 0
C. B = 0, D = 1
D. B = 0, D = Y
Answer: C
Clarification: V1 = V2 = 0
And I2 = -I1
∴ B = (frac{V_1}{I_2}) = 0
∴ D = (frac{-I_1}{I_2}) = 1.
7. For the circuit given below, the values of the h parameter is given as follows h = [16, 3; -2, 0.01]. The value of the ratio (frac{V_2}{V_1}) is ______________
A. 0.3299
B. 0.8942
C. 1.6
D. 0.2941
Answer: D
Clarification: Replacing the given 2-port circuit by an equivalent circuit and applying nodal analysis, we get,
V2 = (20) (2I1) = 40 I1
Or, -10 + 20I1 + 3V2 = 0
Or, 10 = 20I1 + (3) (40I1) = 140I1
∴ I1 = (frac{1}{14}) and V2 = (frac{40}{14})
So, V1 = 16I1 + 3V2 = (frac{136}{14})
And I2 = ((frac{100}{125})) (2I1) = (frac{-8}{70})
∴ (frac{V_2}{V_1} = frac{40}{136}) = 0.2941.
8. For the circuit given below, the values of the h parameter is given as follows h = [16, 3; -2, 0.01]. The value of the ratio (frac{I_2}{I_1}) is ______________
A. 0.3299
B. 0.8942
C. -1.6
D. 0.2941
Answer: C
Clarification: Replacing the given 2-port circuit by an equivalent circuit and applying nodal analysis, we get,
V2 = (20) (2I1) = 40 I1
Or, -10 + 20I1 + 3V2 = 0
Or, 10 = 20I1 + (3) (40I1) = 140I1
∴ I1 = (frac{1}{14}) and V2 = (frac{40}{14})
So, V1 = 16I1 + 3V2 = (frac{136}{14})
And I2 = ((frac{100}{125})) (2I1) = (frac{-8}{70})
∴ (frac{I_2}{I_1}) = -1.6.
9. If for a circuit the value of the h parameter is given as h = [8, 2/3; -2/3, 4/9]. Then the value of the voltage source V is _________________
A. 2.38 V
B. 1.19 V
C. 1.6 V
D. 3.2 V
Answer: B
Clarification: 8I1 + (frac{2}{3V_2}) = 10
V2 = (frac{2}{3})I1 (5||(frac{9}{4}))
= (frac{2}{3})I1 ((frac{45}{29})= frac{30}{29}I_1)
I1 = (frac{29}{30})V2
(8)((frac{29}{30})) V2 + (frac{2}{3})V2 = 10
V2 = (frac{300}{252}) = 1.19 V.
10. For a 2-port network, the value of the h parameter is as h=[600, 0.04; 30, 2×10-3]. Given that, ZS = 2 kΩ and ZL = 400 Ω. The value of the parameter Zin is ______________
A. 250 Ω
B. 333.33 Ω
C. 650 Ω
D. 600 Ω
Answer: B
Clarification: Zin = hie – (frac{h_{re} h_{fe} R_L}{1 + h_{oe} R_L})
= h11 – (frac{h_{12} h_{21} R_L}{1+h_{22} R_L})
= 600 – (frac{0.04×30×400}{1+2×10^{-3}×400}) = 333.33 Ω.
11. For a 2-port network, the value of the h parameter is as h=[600, 0.04; 30, 2×10-3]. Given that, ZS = 2 kΩ and ZL = 400 Ω. The value of the parameter Zout is ______________
A. 650 Ω
B. 500 Ω
C. 250 Ω
D. 600 Ω
Answer: A
Clarification: Zout = (frac{R_s+h_{ie}}{(R_s+h_{ie}) h_{oe}-h_{re} h_{fe}})
= (frac{R_s+h_{11}}{(R_s+h_{11}) h_{22}-h_{21} h_{12}})
= (frac{2000+600}{2600×2×10^{-3}-30×0.04}) = 650 Ω.
12. For the circuit given below, the value of the g11 and g21 are _________________
A. g11 = –(frac{1}{R_1+R_2}), g21 = (frac{R_2}{R_1+R_2})
B. g11 = (frac{1}{R_1-R_2}), g21 = –(frac{R_2}{R_1+R_2})
C. g11 = (frac{1}{R_1+R_2}), g21 = (frac{R_2}{R_1+R_2})
D. g11 = (frac{1}{R_1-R_2}), g21 = (frac{R_2}{R_1-R_2})
Answer: C
Clarification: I1 = (frac{V_1}{R_1+R_2})
Or, g11 = (frac{I_1}{V_1} = frac{1}{R_1+R_2})
By voltage division, V2 = (frac{R_2}{R_1+R_2})V1
Or, g21 = (frac{V_2}{V_1} = frac{R_2}{R_1+R_2}).
13. For the circuit given below, the value of the g12 and g22 are _______________
A. g12 = –(frac{R_2}{R_1+R_2}), g22 = R3 + (frac{R_1 R_2}{R_1+R_2})
B. g12 = (frac{R_2}{R_1+R_2}), g22 = -R3 + (frac{R_1 R_2}{R_1+R_2})
C. g12 = –(frac{R_2}{R_1+R_2}), g22 = R3 – (frac{R_1 R_2}{R_1+R_2})
D. g12 = (frac{R_2}{R_1+R_2}), g22 = -R3 – (frac{R_1 R_2}{R_1+R_2})
Answer: A
Clarification: I1 = –(frac{R_2}{R_1+R_2})I2
Or, g12 = (frac{I_1}{I_2} = -frac{R_2}{R_1+R_2})
Also, I2 (R3 + R1 //R2)
= I2 ((R_3 + frac{R_1 R_2}{R_1+R_2}))
∴ g22 = (frac{V_2}{I_2} = R_3 + frac{R_1 R_2}{R_1+R_2}).
14. For the circuit given below, the value of g11 and g21 are _________________
A. g11 = 0.0667 – j0.0333 Ω, g21 = 0.8 + j0.4 Ω
B. g11 = -0.0667 – j0.0333 Ω, g21 = -0.8 – j0.4 Ω
C. g11 = 0.0667 + j0.0333 Ω, g21 = 0.8 + j0.4 Ω
D. g11 = -0.0667 + j0.0333 Ω, g21 = 0.8 – j0.4 Ω
Answer: C
Clarification: V1 = (12-j6) I1
Or, g11 = (frac{I_1}{V_1} = frac{1}{12-j6}) = 0.0667 + j0.0333 Ω
g21 = (frac{V_2}{V_1} = frac{12I_1}{(12-j6) I_1})
= (frac{2}{2-j}) = 0.8 + j0.4 Ω.
15. For the circuit given below, the value of g12 and g22 are ________________
A. g12 = 0.8 + j0.4 Ω, g22 = 2.4 + j5.2 Ω
B. g12 = -0.8 + j0.4 Ω, g22 = -2.4 – j5.2 Ω
C. g12 = 0.8 – j0.4 Ω, g22 = 2.4 – j5.2 Ω
D. g12 = -0.8 – j0.4 Ω, g22 = 2.4 + j5.2 Ω
Answer: D
Clarification: I1 = (frac{-12}{12-j6})I2
Or, g12 = (frac{I_1}{I_2}) = -g21 = -0.8 – j0.4 Ω
V2 = (j10 + 12 || -j6) I2
g22 = (frac{V_2}{I_2}) = 2.4 + j5.2 Ω.