Mathematics Aptitude Test for Class 10 on “Trigonometric Identities – 2”.
1. If sec θ – tan θ = M then sec θ + tan θ = (frac {1}{M}).
a) False
b) True
Answer: b
Clarification: The appropriate trigonometric identity used here is sec2 θ – tan2 θ = 1.
(sec θ – tan θ) (sec θ + tan θ) = 1
M (sec θ + tan θ) = 1
(sec θ + tan θ) = (frac {1}{M})
2. Find the correct trigonometric identity.
a) cos2 θ = 1 – sin2 θ
b) cos2 θ = 1 + sin2 θ
c) tan2 θ + sec2 θ = 1
d) tan2 θ = sec2 θ + 1
Answer: a
Clarification: The appropriate trigonometric identity used here is sin2 θ + cos2 θ = 1.
cos2 θ = 1 – sin2 θ
3. Evaluate (sec θ – tan θ) (sec θ + tan θ).
a) 0
b) 1
c) 2
d) 3
Answer: b
Clarification: = (sec θ – tan θ) (sec θ + tan θ) = sec2 θ – tan2 θ
= 1
The identity used here is sec2 θ – tan2 θ = 1
4. Evaluate (sqrt {frac {1 – sin , A}{1 + sin , A}}).
a) cos A + tan A
b) cos A – tan A
c) tan A – cot A
d) sec A + tan A
Answer: d
Clarification: (sqrt {frac {1 – sin , A}{1 + sin , A}} = sqrt {frac {1 – sin , A}{1 + sin , A}} . sqrt {frac {1 – sin , A}{1 – sin , A}})
= (frac {sqrt {(1 + sin , A)^2}}{sqrt {1 – sin^2} , A} )
= (frac {1 + sin , A}{sqrt {cos^2} , A}) (∵ sin2 A + cos2 A = 1)
= (frac {1 + sin , A}{cos , A})
= sec A + tan A
5. Evaluate (cosec2 θ – cot2 θ)2 . (cosec θ + cot θ)2.
a) 1
b) 0
c) (cosec2 θ – cot2 θ)2
d) (cosec θ + cot θ)2
Answer: d
Clarification: (cosec2 θ – cot2 θ)2 . (cosec θ + cot θ)2 = 1 (cosec θ + cot θ)2
= (cosec θ + cot θ)2
6. (1 – sin2 A) (1 + tan2 A) equals to _____
a) – Sec2 θ Tan2 θ
b) – Sec2 θ Tan2 θ
c) 1
d) 0
Answer: c
Clarification: (1 – sin2 A) (1 + tan2 A) = cos2 A . sec2 A
= cos2 A . (frac {1}{cos^2 A})
= 1
7. Evaluate (cosec A – 1) (cosec A + 1) (sec2 A – 1).
a) 0
b) 1
c) (frac {4}{3})
d) (frac {3}{4})
Answer: b
Clarification: (cosec A – 1) (cosec A + 1) (sec2 A – 1) = (cosec2 A – 1) (sec2 A – 1)
= cot2A . tan2 A
= (frac {1}{tan^2 A}) . tan2 A
= 1
8. (sin A + cos A)2 is equal to _____
a) 1 + 2sin A cos A
b) 1 – 2sin A cos A
c) 2sin A cos A – 1
d) 2sin A cos A + 1
Answer: a
Clarification: (sin A + cos A)2 = sin2 A + cos2 A + 2sin A cos A
= 1 + 2sin A cos A
9. Evaluate tan2 A + (1 + sec A) (sec A – 1).
a) 3 tan2 A
b) 0
c) 2tan2 A
d) 1
Answer: c
Clarification: tan2 A + (1 + sec A) (sec A – 1) = tan2 A + (sec A + 1) (sec A – 1)
= tan2 A + (sec2 A – 1)
= tan2 A + tan2 A
= 2tan2 A
10. (1 + cosec θ) (1 – cosec θ) + cot2 θ is _____
a) Cot θ
b) 0
c) 1
d) Tan θ
Answer: b
Clarification: (1 + cosec θ) (1 – cosec θ) + cot2 θ = (1 – cosec2 θ) + cot2 θ
= -cot2 θ + cot2 θ (∵ cosec2 A – cot2 A = 1)
= 0
To practice Mathematics Aptitude Test for Class 10,