250+ TOP MCQs on Operations on Matrices | Class 12 Maths

Mathematics Multiple Choice Questions on “Operations on Matrices”.

1. The addition of matrices is only possible if they are of the same order.
a) True
b) False
Answer: a
Clarification: The given statement is true. Addition of matrices is possible only if the matrices are of the same order. If there are two matrices of different order, then A+B is not defined.

2. If A = (begin{bmatrix}1&2&3\9&10&11end{bmatrix}) and B = (begin{bmatrix}0&5&0\5&0&5end{bmatrix}), then find A+B.
a) A+B = (begin{bmatrix}1&7&3\11&10&16end{bmatrix})
b) A+B = (begin{bmatrix}1&7&3\14&11&13end{bmatrix})
c) A+B = (begin{bmatrix}1&7&3\14&10&16end{bmatrix})
d) A+B = (begin{bmatrix}1&5&3\14&10&16end{bmatrix})
Answer: c
Clarification: Given that, A = (begin{bmatrix}1&2&3\9&10&11end{bmatrix}) and B = (begin{bmatrix}0&5&0\5&0&5end{bmatrix})
Then A+B = (begin{bmatrix}1+0&2+5&3+0\9+5&10+0&11+5end{bmatrix}) = (begin{bmatrix}1&7&3\14&10&16end{bmatrix}).

3. If A = (begin{bmatrix}3&4\1&2end{bmatrix}) and B = (begin{bmatrix}1&5\2&3end{bmatrix}), find 2A-3B.
a) (begin{bmatrix}3&7\-4&5end{bmatrix})
b) (begin{bmatrix}-3&-7\-4&-5end{bmatrix})
c) (begin{bmatrix}3&7\-4&-5end{bmatrix})
d) (begin{bmatrix}3&-7\-4&-5end{bmatrix})
Answer: d
Clarification: Given that, A = (begin{bmatrix}3&4\1&2end{bmatrix}) and B = (begin{bmatrix}1&5\2&3end{bmatrix})
⇒2A=2(begin{bmatrix}3&4\1&2end{bmatrix})=(begin{bmatrix}6&8\2&4end{bmatrix}) and 3B=3(begin{bmatrix}1&5\2&3end{bmatrix})=(begin{bmatrix}3&15\6&9end{bmatrix})
∴2A-3B = (begin{bmatrix}6&8\2&4end{bmatrix})–(begin{bmatrix}3&15\6&9end{bmatrix})=(begin{bmatrix}3&-7\-4&-5end{bmatrix}).

4. If A+B = (begin{bmatrix}6&7\5&0end{bmatrix})and A = (begin{bmatrix}2&5\1&-1end{bmatrix}). Find the matrix B.
a) B = (begin{bmatrix}4&1\2&4end{bmatrix})
b) B = (begin{bmatrix}4&2\4&1end{bmatrix})
c) B = (begin{bmatrix}4&1\4&2end{bmatrix})
d) B = (begin{bmatrix}4&4\4&2end{bmatrix})
Answer: b
Clarification: Given that, A+B = (begin{bmatrix}6&7\5&0end{bmatrix})and A = (begin{bmatrix}2&5\1&-1end{bmatrix})
⇒B=(A+B)-A = (begin{bmatrix}6&7\5&0end{bmatrix})–(begin{bmatrix}2&5\1&-1end{bmatrix})
B = (begin{bmatrix}4&2\4&1end{bmatrix})

5. Find the matrix M and N, if M+N = (begin{bmatrix}5&6\7&8end{bmatrix}),M-N = (begin{bmatrix}4&5\6&8end{bmatrix}).
a) M=1/2 (begin{bmatrix}9&11\13&16end{bmatrix}), N=1/2 (begin{bmatrix}1&1\1&0end{bmatrix})
b) M=(begin{bmatrix}5&6\7&8end{bmatrix}), N=(begin{bmatrix}4&5\8&6end{bmatrix})
c) M=1/2 (begin{bmatrix}9&2\13&16end{bmatrix}), N=1/2 (begin{bmatrix}1&1\2&5end{bmatrix})
d) M=1/2 (begin{bmatrix}4&5\1&2end{bmatrix}), N=1/2 (begin{bmatrix}1&2\1&2end{bmatrix})
Answer: a
Clarification:M+N = (begin{bmatrix}5&6\7&8end{bmatrix})-(1) and M-N = (begin{bmatrix}4&5\6&8end{bmatrix})-(2)
Adding equation (1) and equation (2), (M+N)+(M-N)=2M=(begin{bmatrix}5&6\7&8end{bmatrix})+(begin{bmatrix}4&5\6&8end{bmatrix})
M=1/2 (begin{bmatrix}9&11\13&16end{bmatrix}).
Subtracting equation (1) and equation (2), (M+N)-(M-N)=2N=(begin{bmatrix}5&6\7&8end{bmatrix})–(begin{bmatrix}4&5\6&8end{bmatrix})
N=1/2 (begin{bmatrix}1&1\1&0end{bmatrix}).

6. Find the value of x and y if 2(begin{bmatrix}5&x\y-4&6end{bmatrix})+(begin{bmatrix}-4&1\3&2end{bmatrix})=(begin{bmatrix}6&3\10&14end{bmatrix})?
a) x=-1, y=9
b) x=-1, y=-9
c) x=1, y=-9
d) x=1, y=9
Answer: d
Clarification: Given that, 2(begin{bmatrix}5&x\y-4&6end{bmatrix})+(begin{bmatrix}-4&1\3&2end{bmatrix})=(begin{bmatrix}6&3\10&14end{bmatrix})
⇒(begin{bmatrix}2(5)-4&2x+1\2(y-4)+3&2(6)+2end{bmatrix})=(begin{bmatrix}6&3\10&14end{bmatrix})
Comparing the two matrices, 2x+1=3, 2y-8=10
Solving the two equations we get, x=1, y=9.

7. Find AB if A = (begin{bmatrix}1&2\3&4end{bmatrix}) and B = (begin{bmatrix}1&5\3&2end{bmatrix}).
a) AB = (begin{bmatrix}15&23\9&7end{bmatrix})
b) AB = (begin{bmatrix}9&7\23&15end{bmatrix})
c) AB = (begin{bmatrix}7&9\15&23end{bmatrix})
d) AB = (begin{bmatrix}7&9\23&15end{bmatrix})
Answer: c
Clarification: Given that, A = (begin{bmatrix}1&2\3&4end{bmatrix}) and B = (begin{bmatrix}1&5\3&2end{bmatrix})
Then, AB = (begin{bmatrix}1&2\3&4end{bmatrix})(begin{bmatrix}1&5\3&2end{bmatrix})
=(begin{bmatrix}1×1+2×3&1×5+2×2\3×1+4×3&3×5+4×2end{bmatrix})=(begin{bmatrix}7&9\15&23end{bmatrix}).

8. Matrix addition and matrix multiplication both are commutative.
a) True
b) False
Answer: b
Clarification: The given statement is false. Matrix addition is commutative i.e. A+B=B+A. But matrix multiplication is not commutative i.e.AB≠BA.

9. Let A=(begin{bmatrix}3&-5&2\-4&-6&2\7&1&5end{bmatrix}). Find the additive inverse of A.
a) (begin{bmatrix}-3&5&-2\-4&6&2\7&1&5end{bmatrix})
b) (begin{bmatrix}3&-5&2\-4&-6&2\7&1&5end{bmatrix})
c) (begin{bmatrix}-3&5&-2\4&6&-2\-7&-1&-5end{bmatrix})
d) (begin{bmatrix}-3&5&2\-4&6&-2\-7&-1&5end{bmatrix})
Answer: c
Clarification: Additive inverse of matrix A is the negative of A i.e. -A.
Therefore, -A=(begin{bmatrix}-3&5&-2\4&6&-2\-7&-1&-5end{bmatrix})

10. Which of the following condition is incorrect for matrix multiplication?
a) A(BC)=(AB)C
b) A(B+C)=AB+AC
c) AB=0 if either A or B is 0
d) AB=BA
Answer: d
Clarification: Matrix multiplication is never commutative i.e. AB≠BA. Therefore, the condition AB=BA is incorrect.

Leave a Reply

Your email address will not be published. Required fields are marked *