Ordinary Differential Equations Multiple Choice Questions on “Orthogonal Trajectories”.
1. Find the orthogonal trajectories of the family of parabolas y2=4ax.
a) 2x2+y2=k
b) 2y2+x2=k
c) x2-2y2=k
d) 2x2-y2=k
Answer: a
Explanation: Consider (frac{y^2}{x} = 4a)……..differentiating w.r.t x we get (frac{x.2y frac{dy}{dx} – y^2.1}{x^2} = 0)
(2xy frac{dy}{dx} -y = 0)…..DE of the family of curve y2=4ax replacing (frac{dy}{dx}) by (-frac{dx}{dy})
since (frac{dy}{dx}) is the slope of the tangent to the curve –> (-frac{dx}{dy}) is the slope of orthogonal line we get (2x(-frac{dx}{dy}) – y = 0 , or, 2x ,dx + y ,dy = 0 rightarrow int2x ,dx + int y ,dy = c rightarrow x^2 + frac{y^2}{2} = c.)
or 2x2+y2=k is the required orthogonal trajectory.
2. Find the orthogonal trajectories of the family of curves (frac{x^2}{a^2} + frac{y^2}{b^2+k} = 1) where k is the parameter.
a) x2-y2-3a2 logx-k = 0
b) x2+2y2–(frac{a^2}{2}) logx-k = 0
c) x2+y2-2a2 logx-k = 0
d) 2x2-y2–(frac{a^2}{3}) logx-k = 0
Answer: c
Explanation: (frac{x^2}{a^2} + frac{y^2}{b^2+k} = 1)…….(1) differentiating w.r.t x we have (frac{2x}{a^2} + frac{2yy’}{b^2+k} = 0 ,where, y’ = frac{dy}{dx})
i.e (frac{x^2}{a^2} = frac{-yy’}{b^2+k} …..(2) ,from, (1), frac{x^2}{a^2} – 1 = frac{-y^2}{b^2+k} rightarrow frac{x^2-a^2}{a^2} = frac{-y^2}{b^2+k})…..(3) divide (2)&(3)
we get (frac{x}{x^2-a^2} = frac{yy’}{y^2} rightarrow frac{x}{x^2-a^2} = frac{y’}{y})
now (y’=frac{dy}{dx}) is replaced by (-frac{dx}{dy} ,i.e, frac{x}{x^2-a^2} = frac{1}{y}(-frac{dx}{dy}))
separating the variable we get (y ,dy = -frac{(x^2-a^2)}{x} dx) integrating this equation
(int y ,dy = int-x ,dx + int a^2 frac{1}{x} ,dx + c rightarrow frac{y^2}{2} = frac{-x^2}{2} + a^2 log ,x + c)
–> x2+y2-2a2 logx – 2c=0 or x2+y2-2a2 logx-k=0 where k=2c is the required orthogonal trajectory.
3. The Orthogonal DE for family of parabola y2=4a(x+a) is same as _______(where DE stands for Differential equation)
a) DE of parabola y2=4a(x+a)
b) DE of parabola y2=4ax
c) DE of parabola x2=4ay
d) DE of parabola x2=4a(y+a)
Answer: a
Explanation: y2=4a(x+a)……….differentiating w.r.t x we get (2y frac{dy}{dx} = 4a rightarrow a =frac{yy’}{2})
substituting the ‘a’ in given equation i.e : (y^2 = 2yy’(x + frac{yy’}{2}), y=2xy’+yy’^2)…(1)
replacing y’ by (frac{-1}{y’} ,i.e, y=2xfrac{-1}{y’} + y(frac{-1}{y’})^2) or on solving yy’2+2xy’=y…(2)
comparing (2) & (1) we observe that DE of the orthogonal family is same as the DE of the given family of curves thus the family of parabola is self orthogonal.
4. Find the orthogonal trajectories of the family r=a(1+sin θ).
a) r=k(sin θ)
b) r2=k(cos θ)2
c) r=k(1-cos θ)
d) r=k(1-sin θ)
Answer: d
Explanation: r=a(1+sin θ) taking log we get log r=log a+log(1+sin θ)…differentiating
w.r.t θ we have, ( frac{1}{r} frac{dr}{dθ} = frac{cosθ}{1+sinθ}) since given equation is polar slope of tangent is given by ( frac{1}{r} frac{dr}{dθ}) and perpendicular line has a slope of (-rfrac{dθ}{dr} , replacing, frac{1}{r} frac{dr}{dθ} ,by, -rfrac{dθ}{dr})
we have (-rfrac{dθ}{dr} = frac{cosθ}{1+sinθ}) …..separating the variables and integrating it
(int frac{dr}{r} + int frac{1+sinθ}{cosθ} ,dθ = c rightarrow log r + int secθ ,dθ + int tanθ , dθ = c)
log r + log(secθ + tanθ) + log(secθ) = c = log k
(rightarrow log(r(secθ + tanθ) (secθ)) = log k rightarrow rleft(frac{1}{cosθ} + frac{sinθ}{cosθ}right) frac{1}{cosθ} = k)
(frac{r(1+sinθ)}{cos^2 θ} = frac{r(1+sinθ)}{1-sin^2 θ} rightarrow r = k(1-sin θ)) is the required orthogonal trajectory.
5. Which among the following is true for the curve rn = a sinnθ?
a) Given family of curve is Self orthogonal
b) Orthogonal trajectory is rn=k cosnθ where k is an constant
c) Orthogonal trajectory is rn=k cosecnθ where k is an constant
d) Orthogonal trajectory is rn=k sinnθ where k is an constant
Answer: b
Explanation: Consider rn = a sinnθ..(1) –> n log r = log a + log(sinnθ) …differentiating w.r.t θ
( frac{n}{r} frac{dr}{dθ} = frac{n cosnθ}{sinnθ} ,or, frac{1}{r} frac{dr}{dθ} = frac{cosnθ}{sinnθ} = cot ,nθ)
replacing (frac{1}{r} frac{dr}{dθ} ,by, -rfrac{dθ}{dr} ,we,, get, -rfrac{dθ}{dr} = cot ,nθ)
separating the variables and integrating (int frac{dr}{r} int tan,nθ ,dθ = c )
( rightarrow log ,r + frac{log(secnθ)}{n} = c) or n log r + log(sec nθ) = nc = logk
log(rn secnθ) = log k –> rn sec nθ=k or rn=k cosnθ ..(2) is the required orthogonal trajectory since (1)&(2) are not same the given family of curve is not self orthogonal.
Global Education & Learning Series – Ordinary Differential Equations.
To practice all areas of Ordinary Differential Equations,