250+ TOP MCQs on Set Theory of Probability and Answers

Probability and Statistics Multiple Choice Questions & Answers (MCQs) on “Set Theory of Probability – 1”.

1. A and B are two events such that P(A) = 0.4 and P(A ∩ B) = 0.2 Then P(A ∩ B) is equal to ___________
a) 0.4
b) 0.2
c) 0.6
d) 0.8
Answer: a
Clarification: P(A ∩ B) = P(A – (A ∩ B))
= P(A) – P(A ∩ B)
= 0.6 – 0.2 Using P(A) = 1 – P(A)
= 0.4.

2. A problem in mathematics is given to three students A, B and C. If the probability of A solving the problem is 12 and B not solving it is 14. The whole probability of the problem being solved is 6364 then what is the probability of solving it?
a) 18
b) 164
c) 78
d) 12
Answer: c
Clarification:
Let A be the event of A solving the problem
Let B be the event of B solving the problem
Let C be the event of C solving the problem
Given P(a) = 12, P(~B) = 14 and P(A ∪ B ∪ C) = 63/64

We know P(A ∪ B ∪ C) = 1 – P(A ∪ B ∪ C)

= 1 – P(ABC)

= 1 – P(A) P(B) P(C)

Let P(C) = p
ie 6364 = 1 – (12)(14)(p)

= 1 – p8
⇒ P =1/8 = P(C)
⇒P(C) = 1 – P = 1 – 18 = 78.

3. Let A and B be two events such that P(A) = 15 While P(A or B) = 12. Let P(B) = P. For what values of P are A and B independent?
a) 110 and 310
b) 310 and 45
c) 38 only
d) 310
Answer: c
Clarification: For independent events,
P(A ∩ B) = P(A) P(B)
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
= P(A) + P(B) – P(A) P(B)
= 15 + P (15)P
12 = 15 + 45P
⇒ P= 38.

4. If A and B are two mutually exclusive events with P(~A) = 56 and P(b) = 13 then P(A /~B) is equal to ___________
a) 14
b) 12
c) 0, since mutually exclusive
d) 518
Answer: a
Clarification: As A and B are mutually exclusive we have
(Acapbar{B})
And Hence
(P(A/bar{B})=frac{P(Acapbar{B})}{P(bar{B})})
(frac{1-P(bar{A})}{1-P(bar{B})}=frac{1-frac{5}{6}}{1-frac{1}{3}})
(P(A/bar{B})=frac{1}{4})

5. If A and B are two events such that P(a) = 0.2, P(b) = 0.6 and P(A /B) = 0.2 then the value of P(A /~B) is ___________
a) 0.2
b) 0.5
c) 0.8
d) 13
Answer: a
Clarification: For independent events,
P(A /~B) = P(a) = 0.2.

6. If A and B are two mutually exclusive events with P(a) > 0 and P(b) > 0 then it implies they are also independent.
a) True
b) False
Answer: b
Clarification: P(A ∩ B) = 0 as (A ∩ B) = ∅
But P(A ∩ B) ≠ 0 , as P(a) > 0 and P(b) > 0
P(A ∩ B) = P(A) P(B), for independent events.

7. Let A and B be two events such that the occurrence of A implies occurrence of B, But not vice-versa, then the correct relation between P(a) and P(b) is?
a) P(A) < P(B)
b) P(B) ≥ P(A)
c) P(A) = P(B)
d) P(A) ≥ P(B)
Answer: b
Clarification: Here, according to the given statement A ⊆ B
P(B) = P(A ∪ (A ∩ B)) (∵ A ∩ B = A)
= P(A) + P(A ∩ B)
Therefore, P(B) ≥ P(A)

8. In a sample space S, if P(a) = 0, then A is independent of any other event.
a) True
b) False
Answer: a
Clarification: P(a) = 0 (impossible event)
Hence, A is not dependent on any other event.

9. If A ⊂ B and B ⊂ A then,
a) P(A) > P(B)
b) P(A) < P(B)
c) P(A) = P(B)
d) P(A) < P(B)
Answer: c
Clarification: A ⊂ B and B ⊂ A => A = B
Hence P(a) = P(b).

10. If A ⊂ B then?
a) P(a) > P(b)
b) P(A) ≥ P(B)
c) P(B) = P(A)
d) P(B) = P(B)
Answer: b
Clarification: A ⊂ B => BA
Therefore, P(A) ≥ P(B)

11. If A is a perfect subset of B and P(a < Pb), then P(B – A) is equal to ____________
a) P(a) / P(b)
b) P(a)P(b)
c) P(a) + P(b)
d) P(b) – P(a)
Answer: d
Clarification: From Basic Theorem of probability,
P(B – A) = P(b) – P(a), this is true only if the condition given in the question is true.

12. What is the probability of an impossible event?
a) 0
b) 1
c) Not defined
d) Insufficient data
Answer: a
Clarification: If the probability of an event is 0, then it is called as an impossible event.

13. If A = A1 ∪ A2……..∪ An, where A1…An are mutually exclusive events then?
a) (sum_{i=0}^n P(A_i))
b) (sum_{i=1}^n P(A_i))
c) (prod_{i=0}^n P(A_i))
d) Not defined
Answer: b
Clarification: A = A1 ∪ A2……..∪ An, where A1…An
Since A1…An are mutually exclusive
P(a) = P(A1) + P(A2) + … + P(An)
Therefore p(a)=(sum_{i=1}^n P(A_i))

Leave a Reply

Your email address will not be published. Required fields are marked *