250+ TOP MCQs on Table of General Properties of Laplace Transform and Answers

Ordinary Differential Equations online quiz focuses on “Table of General Properties of Laplace Transform”.

1. Find the L(sin3 t).
a) (frac{3}{4(s^2+1)}-frac{1}{4(s^2+9)})
b) (frac{3}{4(s^2+1)}-frac{3}{4(s^2+9)})
c) (frac{3}{4(s^2+1)}-frac{9}{4(s^2+9)})
d) (frac{3}{4(s^2-1)}-frac{3}{4(s^2+9)})
Answer: b
Explanation: In the given question
= L(sin3 t)
= (L left (frac{3 sint}{4}right )-L left (frac{1}{4} sin⁡(3t)right ))
= (frac{3}{4(s^2+1)}-frac{3}{4(s^2+9)}).

2. Find the (L(e^{2t} (1+t)^2)).
a) (frac{1}{s-2}+frac{2}{(s-2)^3} + frac{2}{(s-2)^2})
b) (frac{⁡3}{s-2}+frac{2}{(s-2)^3} + frac{2}{(s-2)^2})
c) (frac{1}{s-2}+frac{2}{(s+2)^3} + frac{2}{(s-2)^2})
d) (frac{1}{s-2}+frac{2}{(s-2)^3} )
Answer: a
Explanation: In the given question,
(L((1+t)^2 )=L(1+t^2+2t))
(=frac{1}{s}+frac{2}{s^3}+frac{2}{s^2} )
(L(e^{2t} (1+t)^2)=frac{1}{s-2}+frac{2}{s-2^3} + frac{2}{(s-2)^2}).——————–By the first shifting property

3. Find the Laplace Transform of g(t) which has value (t-1)3 for t>1 and 0 for t<1.
a) (e^{-2as}×frac{6}{s^4})
b) (e^{-as}×frac{24}{s^5})
c) (e^{-as}×frac{6}{s^4})
d) (e^{-as}×frac{24}{s^4})
Answer: c
Explanation: In the given question,
We use the second shifting property.
Let f(t)=t3
(L(f(t))=frac{6}{s^4})
By the second shifting,
(L(g(t))=e^{-as}×frac{6}{s^4})
.

4. Find the L(t e-2t sinh⁡(4t)).
a) (frac{8s+16}{(s^2+2s-12)^2})
b) (frac{2s+16}{(s^2+2s-12)^2})
c) (frac{8s+16}{(s^2+21s-12)^2})
d) (frac{8s+16}{(s^2+s-12)^2})
Answer: a
Explanation: In the given question,
L(t e-2t sinh⁡(4t))
L(sinh⁡(4t))=(frac{4}{s^2-16})
By effect of multiplication of t
L(t×sinh⁡(4t))=((-1) frac{d}{ds} frac{4}{s^2-16})
L(t×sinh⁡(4t))=(frac{8s}{(s^2-16)^2})
By First shifting property
L(t e-2t sinh⁡(4t))=(frac{8(s+2)}{((s+2)^2-16)^2} = frac{8s+16}{(s^2+2s-12)^2}).

5. Find the L(t+sin(2t)).
a) (frac{1}{s}+frac{2}{(s^2+4)})
b) (frac{1}{s}+frac{3}{(s^2+4)})
c) (frac{1}{s}+frac{2}{(s^2+2)})
d) (frac{2}{s}+frac{2}{(s^2+4)})
Answer: a
Explanation: In the given question,
L(t+sin⁡(2t))
=(frac{1}{s}+frac{2}{(s^2+4)}).

6. The L(te-3t cos⁡(2t)cos⁡(3t)) is given by (kleft [frac{25-(s+3)^2}{((s+3)^2+25)^2} + frac{(1-(s+3)^2)}{((s+3)^2+1)^2}right ]). Find the value of k.
a) 0
b) 1
c) (frac{1}{2})
d) (frac{-1}{2})
Answer: d
Explanation: In the given question,
L(e-3t cos⁡(2t)cos⁡(3t))
L(cos⁡(2t) cos⁡(3t))
=(frac{1}{2} L(cos⁡(5t)+cos⁡(t)))
=(frac{1}{2} left (frac{s}{(s^2+25)}right )+frac{1}{2} left (frac{s}{(s^2+1)}right ))
By effect of multiplication by t
L(t×cos⁡(2t) cos⁡(3t))=((-1)×frac{1}{2}×frac{d}{ds} frac{1}{2} left (frac{s}{(s^2+25)}right )+frac{1}{2} left (frac{s}{(s^2+1)}right ))
=(frac{-1}{2} left [frac{25-s^2}{(s^2+25)^2} + frac{(1-s^2)}{(s^2+1)^2}right])
By the effect of first shifting,
L(te-3t cos⁡(2t)cos⁡(3t))=(frac{-1}{2} left [frac{25-(s+3)^2}{((s+3)^2+25)^2} + frac{1-(s+3)^2}{((s+3)^2+1)^2}right ])
k=(frac{-1}{2}).

7. Find the (Lleft (frac{sinh⁡(at)}{t}right )).
a) (frac{1}{2} log⁡ left (frac{s×a}{s-a}right ))
b) (frac{1}{2} log⁡ left (frac{s-a}{s+a}right ))
c) (frac{1}{2} log⁡ left (frac{s+a}{s-a}right ))
d) (frac{1}{3} log⁡ left (frac{s+a}{s-a}right ))
Answer: c
Explanation: In the given question,
L(sinh⁡(at))=(frac{a}{s^2-a^2})
By effect of division by t,
(Lleft (frac{sinh⁡(at)}{t}right )=int_{s}^{infty}frac{a}{s^2-a^2} ds)
=(a×frac{1}{2a}×log⁡ left (frac{s-a}{s+a}right ) ) in limits s to ∞
=(frac{1}{2} log⁡(0)-frac{1}{2} log⁡ left (frac{s-a}{s+a}right ))
=(frac{1}{2} log⁡ left (frac{s+a}{s-a}right )).

8. Find the (Lleft (frac{d}{dt}(frac{sin⁡t}{t})right)).
a) s×cot-1 s-1
b) s×tan-1 s-1
c) s×cot⁡(s)-1
d) s×tan⁡(s)-1
Answer: a
Explanation: In the given question,
L(sint)=(frac{1}{s^2+1})
By effect of division by t,
(L(frac{sin⁡t}{t})=int_{s}^{infty}frac{1}{s^2+1} ds)
=(frac{pi}{2}-tan^{-1}s)
=cot-1s
By effect of derivative of Laplace Transform,
(Lleft (frac{d}{dt}left (frac{sin⁡t}{t}right )right )=s×cot^{-1}s-1).

9. Find the (L(int_{0}^{t}sin⁡(u) cos⁡(2u)du)).
a) (frac{1}{2s} left [frac{3}{s^2+9}-frac{1}{s^2+1}right ])
b) (frac{1}{2s} left [frac{9}{s^2+9}-frac{1}{s^2+1}right ])
c) (frac{1}{2s} left [frac{3}{s^2+9}+frac{1}{s^2+1}right ])
d) (frac{1}{s} left [frac{3}{s^2+9}-frac{1}{s^2+1}right ])
Answer: a
Explanation: In the given question,
L(sin⁡(t) cos⁡(2t))=(frac{1}{2} L(sin⁡(3t)-sin⁡(t)))
=(frac{1}{2} left [frac{3}{s^2+9}-frac{1}{s^2+1}right ])
By Laplace Transformation of an integral,
(L(int_{0}^{t}sin⁡(u) cos⁡(2u)du)=frac{1}{2s} left [frac{3}{s^2+9}-frac{1}{s^2+1}right ])

10. Which of the following is not a term present in the Laplace Transform of e2t sin4 t.
a) (frac{3}{8s})
b) (frac{3}{8(s-2)})
c) (frac{s}{8((s-2)^2+16)})
d) (frac{s}{2((s-2)^2+4)})
Answer: a
Explanation: In the given question,
sin4 t=(frac{1+cos^2(2t)-2cos⁡(2t)}{4})
L(sin4 t)=(Lleft (frac{1+cos^2 (2t)-2 cos⁡(2t)}{4}right ))
=(frac{3}{8s}-frac{s}{2(s^2+4)}+frac{s}{8(s^2+16)})
By First Shifting Property
L(e2t sin4 t)=(frac{3}{8(s-2)}-frac{s}{2((s-2)^2+4)}+frac{s}{8((s-2)^2+16)})

11. If ((erf⁡(sqrt{t}))=frac{1}{ssqrt{s}}), then what is (L(erf⁡(2sqrt{t})))?
a) (frac{2}{sqrt{s}})
b) (frac{1}{ssqrt{s}})
c) (frac{2}{ssqrt{s}})
d) (frac{4}{ssqrt{s}})
Answer: c
Explanation: In the given question,
By using scaling property of Laplace Transform,
(L(erf⁡(2sqrt{t}))=frac{1}{4}×frac{1}{frac{s}{4}×sqrt{frac{s}{4}}})
=(frac{2}{ssqrt{s}}).

12. Find the value of L(32t).
a) (frac{1}{s-2 log⁡(3)})
b) (frac{1}{s+2 log⁡(3)})
c) (frac{1}{s-3 log⁡(2)})
d) (frac{1}{s+3 log⁡(2)})
Answer: a
Explanation: In the given question,
The formula is,
L(cat)=(frac{1}{s-a log(c)})
L(32t)=(frac{1}{s-2 log⁡(3)}).

Global Education & Learning Series – Ordinary Differential Equations.

To practice all areas of Ordinary Differential Equations for online Quizzes,

Leave a Reply

Your email address will not be published. Required fields are marked *