250+ TOP MCQs on Taylor’s Theorem Two Variables and Answers

Differential and Integral Calculus Multiple Choice Questions on “Taylor’s Theorem Two Variables”.

1. Among the following which is the correct expression for Taylor’s theorem in two variables for the function f (x, y) near (a, b) where h=x-a & k=y-b upto second degree?
a) (f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{4!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
b) (f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+ frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
c) (f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+ frac{(y-b)^2}{2!} f_{yy}(a, b))
d) (f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
Answer: d
Explanation: By definition
(f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
here we can observe that second degree is of the form (p+q)2 similarly Taylor’s theorem is expanded to third degree which is of the form (p+q)3 & f (a+ h, b+ k) = f (x, y)
where((f_x=frac{∂f (x,y)}{∂x}, f_y=frac{∂f (x,y)}{∂y}, f_{xx}=frac{∂}{∂x}(frac{∂f(x,y)}{∂x}), f_{yy}=frac{∂}{∂y} (frac{∂f (x,y)}{∂y}), \
f_{xy}=frac{∂}{∂x}(frac{∂f (x,y)}{∂y})).)

2. Given f (x,y)=ex cos⁡y, what is the value of the fifth term in Taylor’s series near (1,(frac{π}{4})) where it is expanded in increasing order of degree & by following algebraic identity rule?
a) (frac{-e(x-1)(y-frac{π}{4})}{sqrt{2}})
b) (-sqrt{2} e(x-1)(y-frac{π}{4}))
c) (frac{e(x-1)^2}{sqrt{2}})
d) (frac{e(y-frac{π}{4})^2}{sqrt{2}})
Answer: a
Explanation: Taylor’s series expansion is given by
(f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
Thus fifth term is given by (2 frac{(x-a)(x-b)}{2!} f_{xy} (a,b))..(1) where a=1, b=π/4 & (f_{xy}=frac{∂}{∂x}(frac{∂f(x,y)}{∂x}) = frac{∂}{∂x}(frac{∂e^x cos⁡y}{∂y}) =- e^x ,sin⁡y ) at (1, (frac{π}{4}), f_{xy}=frac{-e}{sqrt{2}}) substituting in (1)
We get fifth term as (2 frac{(x-1)(x-π/4)}{2!} frac{-e}{sqrt{2}} = frac{-e(x-1)(y-frac{π}{4})}{sqrt{2}}).

3. Given f (x,y)=sin⁡xy, what is the value of the third degree first term in Taylor’s series near (1,-(frac{π}{2})) where it is expanded in increasing order of degree & by following algebraic identity rule?
a) (frac{π^3}{8})
b) (frac{π^3}{8} frac{(x-1)(y+frac{π}{2})}{3!})
c) 0
d) (-frac{π^3}{8} frac{(x-1)^3}{3!})
Answer: c
Explanation: Third degree first term in Taylor’s series is given by (frac{(x-a)^3 f_{xxx} (x,y)}{3!}) Where a=1 (b=-frac{π}{2}, f_{xxx} (x,y)=frac{∂^3 f(x,y)}{∂x^3} ,i.e, frac{∂^3 sin⁡xy}{∂x^3} = -y^3 cos⁡xy)…… (partial differentiating f (x,y) w.r.t x only)
at (a=1, b=-frac{π}{2}, frac{∂^3 sin⁡xy}{∂x^3} = -frac{π^3 cos-frac{⁡π}{2}}{8}=0) hence third degree first term is given by (-frac{π^3}{8} frac{(x-1)^3}{3!}.0 = 0.)

4. Taylor’s theorem is mainly used in expressing the function as sum with infinite terms.
a) True
b) False
Answer: a
Explanation: Taylor’s theorem helps in expanding a function into infinite terms however, it can be applied to functions that can be expressed finitely.

5. Expansion of (f (x,y) = tan^{-1} frac{⁡y}{x}) upto first degree containing (x+1) & (y-1) is __________
a) (frac{3π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{-1}{2} + frac{(y-1)^2}{2!} frac{1}{2})
b) (frac{π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{1}{4} + frac{(y-1)^2}{2!} frac{1}{4})
c) (frac{5π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{-1}{4} + frac{(y-1)^2}{2!} frac{1}{4})
d) (frac{3π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{-1}{4} + frac{(y-1)^2}{2!} frac{1}{4})
Answer: a
Explanation: We can expand the given function according to Taylor’s theorem
(f (a+ h, b+ k) = f (a, b) + frac{x-a}{1!} f_x(a, b) + frac{y-b}{1!} f_y(a, b) + frac{(x-a)^2}{2!} f_{xx}(a, b)\
+2 frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + frac{(y-b)^2}{2!} f_{yy}(a, b))
Given a=-1 & b=1, f(-1,1)=tan-1⁡-1 = (frac{3π}{4})
(f_x = frac{-y}{x^2+y^2} ,at, (-1,1) = frac{-1}{2})
(f_y = frac{x}{x^2+y^2} ,at, (-1,1) = frac{-1}{2})
(f_{xy} = frac{(x^2+y^2)-2x^2}{(x^2+y^2)^2}) at (-1,1)=0
(f_{xx} = frac{2yx}{(x^2+y^2)^2} ,at, (-1,1)=frac{-2}{4} = frac{-1}{2})
(f_{yy} = frac{-2yx}{(x^2+y^2)^2} ,at, (-1,1)=frac{2}{4} = frac{1}{2}) thus the series is given by
(frac{3π}{4} + frac{(x+1)}{1!} frac{-1}{2} + frac{(y-1)}{1!} frac{-1}{2} + frac{(x+1)^2}{2!} frac{-1}{2} + frac{(y-1)^2}{2!} frac{1}{2}).

Global Education & Learning Series – Differential and Integral Calculus.

To practice all areas of Differential and Integral Calculus,

Leave a Reply

Your email address will not be published. Required fields are marked *