250+ TOP MCQs on Using Properties of Divergence and Curl and Answers

Engineering Mathematics Problems focuses on “Using Properties of Divergence and Curl”.

1. Find the divergence of this given vector (vec{F}=x^3 yvec{i}+3xy^2 zvec{j}+3zxvec{k}).
a) 3x2 y+6xyz+x
b) 2x2 y+6xyz+3x
c) 3x2 y+3xyz+3x
d) 3x2 y+6xyz+3x
View Answer

Answer: d
Explanation: We know that divergence of a vector is given by
(bigtriangledown.vec{F}=frac{partial(x^3 y)}{partial x}+frac{partial(3xy^2 z)}{partial y}+frac{partial(3xz)}{partial z})
(bigtriangledown.vec{F}=3x^2 y+6xyz+3x).

2. Find the divergence of this given vector (vec{r}=12x^6 y^6 vec{i}+3x^3 y^3 zvec{j}+3x^2 yz^2 vec{k}).
a) (12x^5 y^6+2x^3 yz+6x^2 yz)
b) (72x^5 y^6+2x^3 yz+3x^2 yz)
c) (72x^5 y^6+2x^3 yz+6x^2 yz)
d) (6x^5 y^6+2x^3 yz+6x^2 yz)
View Answer

Answer: c
Explanation: We know that divergence of a vector is given by
(bigtriangledown.vec{r}=frac{partial(12x^6 y^6)}{partial x}+frac{partial(3x^3 y^3 z)}{partial y}+frac{partial(3x^2 yz^2)}{partial z})
(bigtriangledown.vec{r}=12×6x^5 y^6+x^3×2y×z+3x^2×y×2z)
(bigtriangledown.vec{r}=72x^5 y^6+2x^3 yz+6x^2 yz).

3. Find the curl for (vec{r}=x^2 yzvec{i}+(3x+2y)zvec{j}+21z^2 xvec{k}).
a) (vec{i}(3x+2y)-vec{j}(11z^2-x^2 y)+vec{k}(3z-x^2 z))
b) (vec{i}(x+2y)-vec{j}(21z^2-x^2 y)+vec{k}(3z-x^2 z))
c) (-vec{i}(3x+2y)-vec{j}(21z^2-x^2 y)+vec{k}(3z-x^2 z))
d) (vec{i}(3x+2y)-vec{j}(21z^2-x^2 y)+vec{k}(3z-x^2 z))
View Answer

Answer: c
Explanation: We know that the curl for any vector quantity is given by
(bigtriangledown.vec{r}=begin{bmatrix}vec{i}&vec{j}&vec{k}\frac{partial}{partial x}&frac{partial}{partial y}&frac{partial}{partial z}\x^2 yz&(3x+2y)z&21z^2 xend{bmatrix})
(bigtriangledown.vec{r}=vec{i}left (frac{partial(21z^2 x)}{partial y}-frac{partial((3x+2y)z)}{partial z}right)-vec{j}left (frac{partial(21z^2 x)}{partial x}-frac{partial(x^2 yz)}{partial z}right))
(+vec{k}left (frac{partial((3x+2y)z)}{partial x}-frac{partial(x^2 yz)}{partial y}right))
(bigtriangledown.vec{r}=-vec{i}(3x+2y)-vec{j}(21z^2-x^2 y)+vec{k}(3z-x^2 z)).

4. Find the curl for ((vec{r})=y^2 z^3 vec{i}+x^2 z^2 vec{j}+(x-2y)vec{k}).
a) (-2vec{i}(1+x^2 z)-vec{j}(1-3y^2 z^2)+vec{2k}(xz^2-yz^3))
b) (-2vec{i}(1+x^2 z)-vec{j}(1-3y^2 z^2)+vec{k}(xz^2-yz^3))
c) (-2vec{i}(1+x^2 z)-vec{j}(1-32z^2)+vec{2k}(xz^2-yz^3))
d) (vec{i}(1+x^2 z)-vec{j}(1-3y^2 z^2)+vec{2k}(xz^2-yz^3))
View Answer

Answer: a
Explanation: We know that the curl for any vector quantity is given by
(bigtriangledown.vec{r}=begin{bmatrix}vec{i}&vec{j}&vec{k}\partial/partial x&partial/partial y&partial/partial z\y^2 z^3&x^2 z^2&(x-2y)end{bmatrix})
(bigtriangledown.vec{r}=vec{i}left (frac{partial(x-2y)}{partial y}-frac{partial(x^2 z^2)}{/partial z}right )-vec{j}left (frac{partial(x-2y)}{partial x}-frac{partial(y^2 z^3)}{partial z}right )+vec{k}left(frac{partial(x^2 z^2)}{partial x}-frac{partial(y^2 z^3)}{partial y}right ))
(bigtriangledown.vec{r}=-2vec{i}(1+x^2 z)-vec{j}(1-3y^2 z^2)+vec{2k}(xz^2-yz^3)).

5. What is the divergence and curl of the vector (vec{F}=x^2 yvec{i}+(3x+y) vec{j}+y^3 zvec{k}).
a) (y^3+2xy+1,vec{i}(3y^2 z)+vec{j}(3-x^2))
b) (y^3+2xy+1,vec{i}(3y^2 z)+vec{k}(3-x^2))
c) (3y^3+2xy+1,vec{i}(3y^2 z)+vec{k}(3-x^2))
d) (y^3+xy+1,vec{i}(3y^2 z)+vec{k}(3-x^2))
View Answer

Answer: b
Explanation: We know that divergence of a vector is given by
(bigtriangledown.vec{F}=frac{partial(x^2 y)}{partial x}+frac{partial(3x+y)}{partial y}+frac{partial(y^3 z)}{partial z})
(bigtriangledown.vec{F}=y^3+2xy+1)
We know that the curl for any vector quantity is given by
(bigtriangledown.vec{r}=begin{bmatrix}vec{i}&vec{j}&vec{k}\frac{partial}{partial x}&frac{partial}{partial y}&frac{partial}{partial z}\x^2 y&3x+y&(y^3 z)end{bmatrix})
(bigtriangledown.vec{r}=vec{i}left (frac{partial(y^3 z)}{partial y}-frac{partial(3x+y)}{partial z}right )-vec{j}left (frac{partial(y^3 z)}{partial x}-frac{partial(x^2 y)}{partial z}right )+vec{k}left (frac{partial(3x+y)}{partial x}-frac{partial(x^2 y)}{partial y}right ))
(bigtriangledown.vec{r}=vec{i}(3y^2 z)+vec{k}(3-x^2)).

 

To practice all areas of Engineering Mathematics Problems, here is complete set of 1000+ Multiple Choice Questions and Answers.

 

Leave a Reply

Your email address will not be published. Required fields are marked *