[Maths Class Notes] on CBSE Class 12 Maths Chapter-2 Inverse Trigonometric Functions Formula Pdf for Exam

S.No

Inverse Trigonometry Class 12 Formulas

1

sin-1 (-x) = -sin-1(x), x ∈ [-1, 1]

2

cos-1(-x) = π -cos-1(x), x ∈ [-1, 1]

3

tan-1(-x) = -tan-1(x), x ∈ R

4

cot-1(-x) = π – cot-1(x), x ∈ R

5

sec-1(-x) = π -sec-1(x), |x| ≥ 1

6

cosec-1(-x) = -cosec-1(x), |x| ≥ 1

7

sin-1x + cos-1x = π/2 , x ∈ [-1, 1]

8

sin-1(1/x) = cosec-1(x), if x ≥ 1 or x ≤ -1

9

cos-1(1/x) = sec-1(x), if x ≥ 1 or x ≤ -1

10

tan-1x + cot-1x = π/2 , x ∈ R

11

tan-1(1/x) = cot-1(x), x > 0

12

tan-1 x + tan-1 y = tan-1((x+y)/(1-xy)), if the value xy < 1

13

tan-1 x – tan-1 y = tan-1((x-y)/(1+xy)), if the value xy > -1

14

2 tan-1 x = sin-1(2x/(1+x2)), |x| ≤ 1

15

sec-1x + cosec-1x = π/2 ,|x| ≥ 1

16

3sin-1x = sin-1(3x-4x3)

17

sin(sin-1(x)) = x, -1≤ x ≤1

18

3cos-1x = cos-1(4x3-3x)

19

cos(cos-1(x)) = x, -1≤ x ≤1

20

3tan-1x = tan-1((3x-x3)/(1-3x2)

21

tan(tan-1(x)) = x, – ∞ < x < ∞

22

sec(sec-1(x)) = x,- ∞ < x ≤ 1 or 1 ≤ x < ∞

23

cosec(cosec-1(x)) = x, – ∞ < x ≤ 1 or -1 ≤ x < ∞

24

cot(cot-1(x)) = x, – ∞ < x < ∞

25

sin-1(sin θ) = θ, -π/2 ≤ θ ≤π/2

26

cos-1(cos θ) = θ, 0 ≤ θ ≤ π

27

tan-1(tan θ) = θ, -π/2 < θ < π/2

28

sec-1(sec θ) = θ, 0 ≤ θ ≤ π/2 or π/2< θ ≤ π

29

cosec-1(cosec θ) = θ, – π/2 ≤ θ < 0 or 0 < θ ≤ π/2

30

cot-1(cot θ) = θ, 0 < θ < π

Leave a Reply

Your email address will not be published. Required fields are marked *