[Physics Class Notes] on Interference in Physics Pdf for Exam

Let’s suppose that you and your friend plan out a day to meet at your favorite restaurant and as the time comes, you feel happy to meet each other. So, the meeting of you and your friend at commonplace is called interference in Physics. Interference Physics clearly says that when two waves coming from varying sources that are not necessarily coherent meet at a point, that point is exactly the interference.

Here, you will learn about interference, its types, its effect on two waves, and also its contrast with the diffraction of light.

In Physics, we can say that interference is a phenomenon in which two waves superpose to form a resultant wave of greater, lower, or the same amplitude. Both Constructive and destructive interference result from the interaction of waves that are correlated or coherent with each other because they come from the same source. The Interference effects can be observed with all types of waves

Interference Physics

Now that we know the meeting point of two friends or waves coming from different places or sources is called interference. Also, we know that friendship is unity. 

 

Now, add another scenario by supposing that you both are army men and some intruders with their superpower guns start firing in the restaurant. As for a single person, it becomes hard to fight these goons, so you both and other army men or policemen having their lunch unite or superimpose by fighting these goons together and protecting hundreds of lives.

 

So, here, the greater the number of brave people, the more people’s lives are saved at the restaurant. 

 

In Physics, the scenario is similar, the two waves superimpose on each other to give a wave of greater amplitude; let’s see how it happens by observing the following diagram.

 

(ImagewillbeUploadedSoon)

 

So, people find security under these bravos, and this situation talks about the constructive interference of light. This context could surely give you an idea that there are types of interference and about one is already discussed above. Now, let’s talk about the types of interference.

Types of Interference

There are two types of interference in Physics which are described as below:

This type of interference is  called constructive interference. Constructive interference is interference that occurs at any location along with the medium where the two interfering waves have a displacement in the same direction.

Both waves have an upward displacement as the  medium has an upward displacement that is greater than the displacement of the two interfering pulses. The constructive interference is observed mainly at  locations where the two interfering waves are displaced upward and also both interfering waves are displaced downward. 

Example

We join two or more bogies to get a big train and fetch maximum people to a particular location without needing to manufacture two or more trains for a single location and utilize a lump sum of money for the same.

Destructive interference occurs at any location along with the medium where the two interfering waves have a displacement in the opposite direction. When  a sine pulse with a maximum displacement of +1 unit meets a sine pulse with a maximum displacement of –1 unit, destructive interference occurs. 

Constructive Interference VS Destructive Interference 

So, we know that the waves making a big wave is constructive interference whereas two waves canceling each other is destructive interference. The difference between the two types of interference is described in the form of the following graph:

In this graph, we can see that the crest and troughs of the two waves overlap each other. The same scenario is observable when we drop a stone in water, the waves spread in the form of concentric circles, and the point of this overlap is the interference; this is for constructive interference.

 

Now, talking about the destructive interference, another stone is dropped in the vicinity of these already formed concentric circular waves. So, here, the waves of another stone may cancel out the already formed waves. Now, this canceling may produce no effect and that’s the point where we get the destructive interference.

Equation of Interference in Physics

Constructive Interference: When the phase difference is an even multiple of π (φ = ….., –4π, –2π, 0, 2π, 4π,……), then cos φ/2 =1, so the sum of the two waves is a wave with twice the amplitude.

 

W1+W2 = 2A cos(kx−ωt)W1+W2=2A cos (kx−ωt)

Destructive interference: When the phase difference is an odd multiple of π (φ =….., –3π, –π, 0, π, 3π, 5π,……), then cos φ/2 = 0, so the sum of the two waves will be zero.

W1+W2=0

Constructive Interference Equation

The equations for constructive interference are as follows:

           y1 = Cos (kx – t), and

           y2 = Cos [Cos (kx – t + frac {pi}{2})]

Here,

ω = Frequency in per Radians

k = wave number (= 1) 

δ = phase difference between two waves

t = time

x = wave position in a given time ‘t’

 

The frequency of two waves is the same as in constructive interference. We get the superimposed wave of the same amplitude and frequency. 

Point to Remember

In determining the interference of light, we use fringes, so in the pattern of interference, the intensity at minima is usually negligible or close to zero, which means minima is usually dark. 

 

Also, there is a very good contrast between the dark and bright fringe.

Interference and Diffraction of Light

Interference of Light

Interference of light takes place on the meeting of the two waves as they travel along with a similar medium. Besides this, the interference causes the medium to take a particular orientation; moreover, this shape is due to the whole effect of two individual waves on the medium’s particles.

 

Diffraction of Light

Diffraction is observable in the scenario of waves passing through an aperture spread out in the dark region like a light coming out of a tunnel. In the case of diffraction, the size of the obstacle or aperture is of straight dimensions to the incident wave’s wavelength, and its occurrence is significant. Furthermore, it takes place when the traveling wavelength’s part gets shaded.

Leave a Reply

Your email address will not be published. Required fields are marked *