250+ TOP MCQs on Rectification in Polar and Parametric Forms and Answers

Differential and Integral Calculus Multiple Choice Questions on “Rectification in Polar and Parametric Forms”.

1. Find the length of the curve given by the equation.
(x^{frac{2}{3}}+y^frac{2}{3}=a^frac{2}{3})
a) (frac{3a}{2})
b) (frac{-7a}{2})
c) (frac{-3a}{4})
d) (frac{-3a}{2})
View Answer

Answer: d
Explanation: We know that,
S=(int_{x1}^{x2}sqrt{1+frac{dy}{dx}^2})
(y^frac{2}{3}=a^frac{2}{3}-x^frac{2}{3})
Differentiating on both sides
(frac{2}{3} y^{frac{2}{3}-1}= frac{-2}{3} x^{frac{2}{3}-1})
(frac{dy}{dx} = -frac{y}{x}^{frac{1}{3}})
((frac{dy}{dx})^2 = (frac{y}{x})^{frac{1}{3}})
(1+(frac{dy}{dx})^2=1+(frac{y}{x})^frac{2}{3})
Substituting from the original equation-
(1+(frac{dy}{dx})^2=(frac{a}{x})frac{2}{3})
(sqrt{1+frac{dy^2}{dx}}=(frac{a}{x})^{frac{1}{3}})
(S=int_{a}^{0}(frac{a}{x})^{frac{1}{3}} dx )
(s=frac{-3a}{2})
Thus, length of the given curve is (frac{-3a}{2}).

2. Find the length of one arc of the given cycloid.

x=a(θ-sinθ)
y=a(1+cosθ)

a) a
b) 4a
c) 8a
d) 2a
View Answer

Answer: c
Explanation: We know that
(s=int_{theta1}^{theta2}sqrt{(frac{dx}{dtheta})^2+(frac{dy}{dtheta})^2})
(frac{dx}{dtheta}=a(1-costheta))
(frac{dy}{dtheta}=a(-sintheta))
((frac{dx}{dtheta})^2+(frac{dy}{dtheta})^2=a^2(1-costheta)^2+a^2 sin^2theta)
((frac{dx}{dtheta})^2+(frac{dy}{dtheta})^2=4a^2 sin^2frac{theta}{2})
(s=int_{0}^{2}pisqrt{4a^2 sin^2frac{theta}{2}} dtheta)
On solving the given integral, we get
s=8a
Thus length of one arc of the given cycloid is 8a.

Global Education & Learning Series – Differential and Integral Calculus.

To practice all areas of Differential and Integral Calculus, here is complete set of 1000+ Multiple Choice Questions and Answers.

 

Leave a Reply

Your email address will not be published. Required fields are marked *